Lipid Membrane Dynamics

  • Maikel C. Rheinstädter
Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)


Neutron and X-ray scattering provide the perfect microscope to study structure and dynamics in biomolecular systems such as membranes and proteins. Dynamic scattering experiments give access to the relevant length and time scales of nanometers and pico- or nanoseconds. Local environments in membranes and proteins can be probed by incoherent neutron scattering experiments. Interactions in complex biological membranes can be probed by using deuterated samples in coherent inelastic scattering experiments. The experiments allow us to link frequencies to certain internal length scales, which is a prerequisite for assigning the dynamical modes to certain molecules or functional groups. In this chapter, it is shown how membrane properties and interactions between membrane-embedded proteins can be determined from dynamical scattering experiments.


Inelastic Neutron Scattering Incoherent Scattering Purple Membrane Internal Length Scale Lipid Acyl Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is my pleasure to thank all my colleagues who were involved in the original work and publications. The data presented here were collected at the high flux reactor of the Institut Laue-Langevin in Grenoble


  1. 1.
    Rheinstädter MC, Seydel T, Häußler W, Salditt T (2006) Exploring the collective dynamics of lipid membranes with inelastic neutron scattering. J Vac Sci Technol A 24:1191–1196CrossRefGoogle Scholar
  2. 2.
    Voïtchovsky K, Contera SA, Ryan JF (2009) Lateral coupling and cooperative dynamics in the function of the native membrane protein bacteriorhodopsin. Soft Mat 5:4899CrossRefGoogle Scholar
  3. 3.
    Frauenfelder H, Sligar S, Wolynes P (1991) The energy landscapes and motions of proteins. Science 254:1598–1603CrossRefGoogle Scholar
  4. 4.
    Fenimore P, Frauenfelder H, McMahon B, Young R (2004) Bulk-solvent and hydration-shell fluctuations, similar to α- and β-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci U S A 101:14408–14413CrossRefGoogle Scholar
  5. 5.
    Bayerl T (2000) Collective membrane motions. Curr Opin Colloid Interface Sci 5:232–236CrossRefGoogle Scholar
  6. 6.
    Rheinstädter MC, Häussler W, Salditt T (2006) Dispersion relation of lipid membrane shape fluctuations by neutron spin-echo spectrometry. Phys Rev Lett 97:048103CrossRefGoogle Scholar
  7. 7.
    Smith JC (1991) Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Q Rev Biophys 24:227–291CrossRefGoogle Scholar
  8. 8.
    Hayward JA, Smith JC (2002) Temperature dependence of protein dynamics: computer simulation analysis of neutron scattering properties. Biophys J 82:1216–1225CrossRefGoogle Scholar
  9. 9.
    Tarek M, Tobias D, Chen S-H, Klein M (2001) Short wavelength collective dynamics in phospholipid bilayers: a molecular dynamics study. Phys Rev Lett 87:238101CrossRefGoogle Scholar
  10. 10.
    Tarek M, Tobias D (2002) Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88:138101CrossRefGoogle Scholar
  11. 11.
    Wood K, Plazanet M, Gabel F, Kessler B, Oesterhelt D, Tobias DJ, Zaccai G, Weik M (2007) Coupling of protein and hydration-water dynamics in biological membranes. Proc Natl Acad Sci U S A 104:18049–18054CrossRefGoogle Scholar
  12. 12.
    Meinhold L, Smith JC, Kitao A, Zewail AH (2007) Picosecond fluctuating protein energy landscape mapped by pressure—temperature molecular dynamics simulation. Proc Natl Acad Sci U S A 104:17261–17265CrossRefGoogle Scholar
  13. 13.
    Salditt T (2000) Structure and fluctuations of highly oriented phospholipid membranes. Curr Opin Colloid Interface Sci 5:19–26CrossRefGoogle Scholar
  14. 14.
    Krueger S (2001) Neutron reflection from interfaces with biological and biomimetic materials. Curr Opin Colloid Interface Sci 6:111–117CrossRefGoogle Scholar
  15. 15.
    Salditt T (2005) Thermal fluctuations and stability of solid-supported lipid membranes. J Phys Condens Matter 17:R287–R314CrossRefGoogle Scholar
  16. 16.
    Kučerka N, Nieha M-P, Pencera J, Harroun T, Katsaras J (2007) The study of liposomes, lamellae and membranes using neutrons and X-rays. Curr Opin Colloid Interface Sci 12:17–22CrossRefGoogle Scholar
  17. 17.
    Krueger S, Meuse C, Majkrzak C, Dura A, Berk NF, Tarek M, Plant AL (2001) Investigation of hybrid bilayer membranes with neutron reflectometry: probing the interactions of melittin. Langmuir 17:511–521CrossRefGoogle Scholar
  18. 18.
    Fragneto G, Rheinstädter M (2007) Structural and dynamical studies from bio-mimetic systems: an overview. C R Phys 8:865–883CrossRefGoogle Scholar
  19. 19.
    Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663CrossRefGoogle Scholar
  20. 20.
    Kralchevsky PA (1997) Lateral forces acting between particles in liquid films or lipid membranes. Adv Biophys 34:25–39CrossRefGoogle Scholar
  21. 21.
    Bohinc K, Kralj-Iglic V, May S (2003) Interaction between two cylindrical inclusions in a symmetric lipid bilayer. J Chem Phys 119:7435–7444CrossRefGoogle Scholar
  22. 22.
    Biscari P, Bisi F (2002) Membrane-mediated interactions of rod-like inclusions. Eur Phys J E 6:381–386Google Scholar
  23. 23.
    Lagüe P, Zuckermann MJ, Roux B (2001) Lipid-mediated interactions between intrinsic membrane proteins: dependence on protein size and lipid composition. Biophys J 81:276–284CrossRefGoogle Scholar
  24. 24.
    Dan N, Pincus P, Safran S (1993) Membrane-induced interactions between inclusions. Langmuir 9:2768–2771CrossRefGoogle Scholar
  25. 25.
    König S, Pfeiffer W, Bayerl T, Richter D, Sackmann E (1992) Molecular dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. J Phys II (France) 2:1589–1615CrossRefGoogle Scholar
  26. 26.
    König S, Sackmann E, Richter D, Zorn R, Carlile C, Bayerl T (1994) Molecular dynamics of water in oriented DPPC multilayers studied by quasielastic neutron scattering and deuterium-nuclear magnetic resonance relaxation. J Chem Phys 100:3307–3316CrossRefGoogle Scholar
  27. 27.
    König S, Bayerl T, Coddens G, Richter D, Sackmann E (1995) Hydration dependence of chain dynamics and local diffusion in L-alpha-dipalmitoylphosphatidylcholine multilayers studied by incoherent quasi-elastic neutron scattering. Biophys J 68:1871–1880CrossRefGoogle Scholar
  28. 28.
    Pfeiffer W, Henkel T, Sackmann E, Knorr W (1989) Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. Europhys Lett 8:201–206CrossRefGoogle Scholar
  29. 29.
    Pfeiffer W, König S, Legrand J, Bayerl T, Richter D, Sackmann E (1993) Neutron spin echo study of membrane undulations in lipid multibilayers. Europhys Lett 23:457–462CrossRefGoogle Scholar
  30. 30.
    Lindahl E, Edholm O (2000) Mesoscopic undulations and thickness fluctuations in lipid bilayers from molecular dynamics simulations. Biophys J 79:426–433CrossRefGoogle Scholar
  31. 31.
    Lipowsky R, Sackmann E (eds) (1995) Structure and dynamics of membranes. Elsevier, AmsterdamGoogle Scholar
  32. 32.
    Nevzorov A, Brown M (1997) Bilayers from comparative analysis of 2H and 13C NMR relaxation data as a function of frequency and temperature. J Chem Phys 107:10288–10310CrossRefGoogle Scholar
  33. 33.
    Bloom M, Bayerl T (1995) Membranes studied using neutron scattering and NMR. Can J Phys 73:687–696CrossRefGoogle Scholar
  34. 34.
    Takeda T, Kawabata Y, Seto H, Komura S, Gosh S, Nagao M, Okuhara D (1999) Neutron spin echo investigations of membrane undulations in complex fluids involving amphiphiles. J Phys Chem Solids 60:1375–1377CrossRefGoogle Scholar
  35. 35.
    Hirn R, Bayerl T, Rädler J, Sackmann E (1999) Collective membrane motions of high and low amplitude, studied by dynamic light scattering and micro-interferometry. Faraday Discuss 111:17–30CrossRefGoogle Scholar
  36. 36.
    Hirn RB, Bayerl TM (1999) Collective membrane motions in the mesoscopic range and their modulation by the binding of a monomolecular protein layer of streptavidin studied by dynamic light scattering. Phys Rev E 59:5987–5994CrossRefGoogle Scholar
  37. 37.
    Hildenbrand MF, Bayerl TM (2005) Differences in the modulation of collective membrane motions by ergosterol, lanosterol, and cholesterol: a dynamic light scattering study. Biophys J 88:3360–3367CrossRefGoogle Scholar
  38. 38.
    Squires G (1978) Introduction to the theory of thermal neutron scattering. Dover, New YorkGoogle Scholar
  39. 39.
    Lovesey S (1984) Theory of neutron scattering from condensed matter. Clarendon Press, OxfordGoogle Scholar
  40. 40.
    Liao C, Chen S, Sette F (2000) Analysis of inelastic X-ray scattering spectra of low-temperature water. Phys Rev E 61:1518–1526CrossRefGoogle Scholar
  41. 41.
    Chen S, Liao C, Huang H, Weiss T, Bellisent-Funel M, Sette F (2001) Collective dynamics in fully hydrated phospholipid bilayers studied by inelastic X-ray scattering. Phys Rev Lett 86:740–743CrossRefGoogle Scholar
  42. 42.
    Rheinstädter MC, Ollinger C, Fragneto G, Demmel F, Salditt T (2004) Collective dynamics of lipid membranes studied by inelastic neutron scattering. Phys Rev Lett 93:108107CrossRefGoogle Scholar
  43. 43.
    Mezei F (ed) (1980) Neutron spin echo. Springer, HeidelbergGoogle Scholar
  44. 44.
    Chu N, Kučerka N, Liu Y, Tristram-Nagle S, Nagle JF (2005) Anomalous swelling of lipid bilayer stacks is caused by softening of the bending modulus. Phys Rev E 71:041904CrossRefGoogle Scholar
  45. 45.
    Jenskea R, Lindström F, Gröbner G, Vettera W (2008) Impact of free hydroxylated and methyl-branched fatty acids on the organization of lipid membranes. Chem Phys Lipids 154:26–32CrossRefGoogle Scholar
  46. 46.
    Aussenac F, Laguerre M, Schmitter J-M, Dufourc EJ (2003) Detailed structure and dynamics of bicelle phospholipids using selectively deuterated and perdeuterated labels. 2H NMR and molecular mechanics study. Langmuir 19:10468–10479CrossRefGoogle Scholar
  47. 47.
    Rheinstädter MC, Seydel T, Salditt T (2007) Nanosecond molecular relaxations in lipid bilayers studied by high energy resolution neutron scattering and in-situ diffraction. Phys Rev E 75:011907CrossRefGoogle Scholar
  48. 48.
    Hub JS, Salditt T, Rheinstädter MC, de Groot BL (2007) Short range order and collective dynamics of DMPC bilayers. A comparison between molecular dynamics simulations, X-ray, and neutron scattering experiments. Biophys J 93:3156–3168. doi:dx.doi.orgGoogle Scholar
  49. 49.
    Kučerka N, Liu Y, Chu N, Petrache HI, Tristram-Nagle S, Nagle JF (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88:2626–2637CrossRefGoogle Scholar
  50. 50.
    de Schepper I, Verkerk P, van Well A, de Graaf L (1983) Short-wavelength sound modes in liquid argon. Phys Rev Lett 50:974–977CrossRefGoogle Scholar
  51. 51.
    van Well A, Verkerk P, de Graaf L, Suck J-B, Copley J (1985) Density fluctuations in liquid argon: coherent dynamic structure factor along the 120-K isotherm obtained by neutron scattering. Phys Rev A 31:3391–3414CrossRefGoogle Scholar
  52. 52.
    van Well A, de Graaf L (1985) Density fluctuations in liquid neon studied by neutron scattering. Phys Rev A 32:2396–2412CrossRefGoogle Scholar
  53. 53.
    Glyde H (1994) Excitations in liquid and solid helium. Clarendon Press, OxfordGoogle Scholar
  54. 54.
    Caillé A (1972) X-ray scattering by smectic-A crystals. C R Acad Sci Ser B 274:891–893Google Scholar
  55. 55.
    Lei N, Safinya C, Bruinsma R (1995) Discrete harmonic model for stacked membranes: theory and experiment. J Phys II 5:1155–1163CrossRefGoogle Scholar
  56. 56.
    Lyatskaya Y, Liu Y, Tristram-Nagle S, Katsaras J, Nagle JF (2000) Method for obtaining structure and interactions from oriented lipid bilayers. Phys Rev E 63:011907CrossRefGoogle Scholar
  57. 57.
    Salditt T, Vogel M, Fenzl W (2003) Thermal fluctuations and positional correlations in oriented lipid membranes. Phys Rev Lett 90:178101CrossRefGoogle Scholar
  58. 58.
    Romanov V, Ul’yanov S (2002) Dynamic and correlation properties of solid supported smectic-A films. Phys Rev E 66:061701CrossRefGoogle Scholar
  59. 59.
    Bary-Soroker H, Diamant H (2007) Nanoscale surface relaxation of a membrane stack. Phys Rev E 76:042401CrossRefGoogle Scholar
  60. 60.
    Bary-Soroker H, Diamant H (2006) Surface relaxation of lyotropic lamellar phases. Europhys Lett 73:871–877CrossRefGoogle Scholar
  61. 61.
    Ribotta R, Salin D, Durand G (1974) Quasielastic rayleigh scattering in a smectic-A crystal. Phys Rev Lett 32:6–9CrossRefGoogle Scholar
  62. 62.
    Haupts U, Tittor J, Oesterhelt D (1999) Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct 28:367–399CrossRefGoogle Scholar
  63. 63.
    Zaccai G (2000) Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum. Biophys Chem 86:249–257CrossRefGoogle Scholar
  64. 64.
    Koltover I, Salditt T, Rigaud J-L, Safinya C (1998) Stacked 2D crystalline sheets of the membrane-protein bacteriorhodopsin: a specular and diffuse reflectivity study. Phys Rev Lett 81:2494–2497CrossRefGoogle Scholar
  65. 65.
    Koltover I, Rädler J, Salditt T, Safinya C (1999) Phase behavior and interactions of the membrane-protein bacteriorhodopsin. Phys Rev Lett 82:3184–3187CrossRefGoogle Scholar
  66. 66.
    Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau E (2002) Bacteriorhodopsin: a high resolution structural view of vectorial proton transport. Biochim Biophys Acta 1565:144–167CrossRefGoogle Scholar
  67. 67.
    Lanyi J (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688CrossRefGoogle Scholar
  68. 68.
    Rheinstädter MC, Schmalzl K, Wood K, Strauch D (2009) Protein-protein interaction in purple membrane. Phys Rev Lett 103:128104CrossRefGoogle Scholar
  69. 69.
    Baudry J, Tajkhorshid E, Molnar F, Phillips J, Schulten K (2001) Molecular dynamics study of bacteriorhodopsin and the purple membrane. J Phys Chem 105:905–918Google Scholar
  70. 70.
    Luecke H, Schobert B, Richter H-T, Cartailler J-P, Lanyi JK (1999) Structural changes in bacteriorhodopsin during ion transport at 2 angstrom resolution. Science 286:255–260CrossRefGoogle Scholar
  71. 71.
    Zaccai G (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288:1604–1607CrossRefGoogle Scholar
  72. 72.
    Kurkal-Siebert V, Agarwal R, Smith JC (2008) Hydration-dependent dynamical transition in protein: protein interactions at ≈ 240 K. Phys Rev Lett 100:138102CrossRefGoogle Scholar
  73. 73.
    Liu D, Chu X-Q, Lagi M, Zhang Y, Fratini E, Baglioni P, Alatas A, Said A, Alp E, Chen S-H (2008) Studies of phononlike low-energy excitations of protein molecules by inelastic X-ray scattering. Phys Rev Lett 101:135501CrossRefGoogle Scholar
  74. 74.
    Rheinstädter MC, Das J, Flenner EJ, Brüning B, Seydel T, Kosztin I (2008) Motional coherence in fluid phospholipid membranes. Phys Rev Lett 101:248106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Physics and AstronomyMcMaster UniversityWest HamiltonCanada
  2. 2.Chalk River LaboratoriesCanadian Neutron Beam CentreChalk RiverCanada

Personalised recommendations