Glycosphingolipids and Insulin Resistance

  • Johannes M. Aerts
  • Rolf G. Boot
  • Marco van Eijk
  • Johanna Groener
  • Nora Bijl
  • Elisa Lombardo
  • Florence M. Bietrix
  • Nick Dekker
  • Albert K. Groen
  • Roelof Ottenhoff
  • Cindy van Roomen
  • Jan Aten
  • Mireille Serlie
  • Mirjam Langeveld
  • Tom Wennekes
  • Hermen S. Overkleeft
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 721)


Glycosphingolipids are structural membrane components, residing largely in the plasma membrane with their sugar-moieties exposed at the cell’s surface. In recent times a crucial role for glycosphingolipids in insulin resistance has been proposed. A chronic state of insulin resistance is a rapidly increasing disease condition in Western and developing countries. It is considered to be the major underlying cause of the metabolic syndrome, a combination of metabolic abnormalities that increases the risk for an individual to develop Type 2 diabetes, obesity, cardiovascular disease, polycystic ovary syndrome and nonalcoholic fatty liver disease. As discussed in this chapter, the evidence for a direct regulatory interaction of glycosphingolipids with insulin signaling is still largely indirect. However, the recent finding in animal models that pharmacological reduction of glycosphingolipid biosynthesis ameliorates insulin resistance and prevents some manifestations of metabolic syndrome, supports the view that somehow glycosphingolipids act as critical regulators, Importantly, since reductions in glycosphingolipid biosynthesis have been found to be well tolerated, such approaches may have a therapeutic potential.


Gauche Disease Muscle Ceramide Content DVVRFLDWHG ZLWK 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biddinger SB, Kahn CR. From mice to men: insights into the insulin resistance syndromes. Annu Rev Physiol 2006; 68:123–158.PubMedCrossRefGoogle Scholar
  2. 2.
    Kido Y, Nakae J, Accili D. Clinical review 125: the insulin receptor and its cellular targets. J Clin Endocrinol Metab 2001; 86:972–979.PubMedCrossRefGoogle Scholar
  3. 3.
    Schinner S, Scherbaum WA, Bornstein SR et al. Molecular mechanisms of insulin resistance. Diabetic Med 2005; 22:674–682.PubMedCrossRefGoogle Scholar
  4. 4.
    Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab 2002; 13:444–451.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoehn KL, Hohnen-Behrens C, Cederberg A et al. IRS 1-independent defects define major nodes of insulin resistance. Cell Metab 2008; 7:421–433.PubMedCrossRefGoogle Scholar
  6. 6.
    Cross DA, Alessi DR, Cohen P et al. Inhibition of glycogen synthasekinase-3 by insulin mediated by protein kinase B. Nature 1995; 378:785–789.PubMedCrossRefGoogle Scholar
  7. 7.
    Biggs WH 3rd, Meisenhelder J, Hunter T et al. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factorFKHR1. Proc Natl Acad Sci USA 1999; 96:7421–7426.PubMedCrossRefGoogle Scholar
  8. 8.
    Paradis S, Ruvkun G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 1998; 12:2488–2498.PubMedCrossRefGoogle Scholar
  9. 9.
    Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 2002;4:658–665.PubMedCrossRefGoogle Scholar
  10. 10.
    Kitamura T, Kitamura Y, Kuroda S et al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol Cell Biol 1999; 19:6286–6296.PubMedGoogle Scholar
  11. 11.
    Kane S, Sano H, Liu SC et al. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem 2002; 277:22115–22118.PubMedCrossRefGoogle Scholar
  12. 12.
    Chang L, Chiang SH, Saltiel AR. TC10alpha is required for insulin-stimulated glucose uptake in adipocytes. Endocrinology 2007; 148:27–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Lazar DF, Wiese RJ, Brady MJ et al. Mitogen-activated protein kinase inhibition does not block the stimulation of glucose utilization by insulin. J Biol Chem 1995; 270(35):20801–20807.PubMedCrossRefGoogle Scholar
  14. 14.
    Meijer AJ, Codogno P. Autophagy: a sweet process in diabetes. Cell Metab 2008; 8(4):275–276.PubMedCrossRefGoogle Scholar
  15. 15.
    Scarlatti F, Granata R, Meijer AJ et al. Does autophagy have a license to kill mammalian cells? Cell Death Differ 2009; 16:12–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Goal of the Diabetes Programme. World Health Organization 2009. Available at:
  17. 17.
    Yki-Jarvinen H. Insulin resistance in type II diabetes. In: Pickup JC, Williams G, eds. Textbook of Diabetes. Oxford: Blackwell Publishing, 2003:22.1–22.19.Google Scholar
  18. 18.
    Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 2008; 7:95–96.PubMedCrossRefGoogle Scholar
  19. 19.
    Tataranni PA, Ortega E. A burning question: does an adipokine-induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes 2005; 54:917–927.PubMedCrossRefGoogle Scholar
  20. 20.
    Weisberg SP, McCann D, Desai M et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112:1796–1808.PubMedGoogle Scholar
  21. 21.
    Fantuzzi G. Adipose tissue, adipokines and inflammation. J Allergy Clin Immunol 2005; 115:911–919.PubMedCrossRefGoogle Scholar
  22. 22.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444:860–867.PubMedCrossRefGoogle Scholar
  23. 23.
    Shoelson SE, Herrero L, Naaz A. Obesity, inflammation and insulin resistance. Gastroenterology 2007; 132(6):2169–2180.PubMedCrossRefGoogle Scholar
  24. 24.
    Bloomgarden ZT. Inflammation, atherosclerosis and aspects of insulin action. Diabetes Care 2005; 28(9):2312–2319.PubMedCrossRefGoogle Scholar
  25. 25.
    Ferré P, Foufelle F. SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Horm Res 2007; 68:72–82.PubMedCrossRefGoogle Scholar
  26. 26.
    Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109:1125–1131.PubMedGoogle Scholar
  27. 27.
    Shimomura I, Matsuda M, Hammer RE et al. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 2000; 6:77–86.PubMedGoogle Scholar
  28. 28.
    Sajan MP, Standaert MI, Rivas J et al. Role of atypical protein kinase C in activation of sterol regulatory element binding protein-1c and nuclear factor kappa B (NFκB) in liver of rodents used as a model of diabetes and relationships to hyperlipidaemia and insulin resistance. Diabetologia 2009; 52:1197–1207.PubMedCrossRefGoogle Scholar
  29. 29.
    Unger RH. Lipotoxic diseases. Ann Rev Med 2002; 53:319–336.PubMedCrossRefGoogle Scholar
  30. 30.
    Unger RH. Lipid overload and overflow: metabolic trauma and the metabolic syndrome. Trends Endocrinol Metab 2003; 14(9):398–403.PubMedCrossRefGoogle Scholar
  31. 31.
    Muoio DM, Newgard CB. Obesity-related derangements in metabolic regulation. Ann Rev Biochem 2006; 75:367–401.PubMedCrossRefGoogle Scholar
  32. 32.
    Krssak M, Falk PK, Dresner A et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia 1999;42(1):113–116.PubMedCrossRefGoogle Scholar
  33. 33.
    Chavez JA, Summers SA. Lipid oversupply, selective insulin resistance and lipotoxicity: Molecular mechanisms. Biochim Biophys Acta 2009 [Epub ahead of print].Google Scholar
  34. 34.
    Samuel VT, Liu ZX, Wang A et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007; 117:739–745.PubMedCrossRefGoogle Scholar
  35. 35.
    Yu C, Chen Y, Zong H et al. Mechanism by which fatty acids inhibit insulin activation of IRS-1 associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002; 277:50230–50236.PubMedCrossRefGoogle Scholar
  36. 36.
    Cazzolli R, Mitchell TW, Burchfield JG et al. Dilinoleoyl-phosphatidic acid mediates reduced IRS-1 tyrosine phosphorylation in rat skeletal muscle cells and mouse muscle. Diabetologia 2007; 50:1732–1742.PubMedCrossRefGoogle Scholar
  37. 37.
    Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2008; 440:944–948.CrossRefGoogle Scholar
  38. 38.
    Hoehn KL, Hohnen-Behrens C, Cederberg A et al. IRS 1-independent defects define major nodes of insulin resistance. Cell Metab 2008; 7:421–433.PubMedCrossRefGoogle Scholar
  39. 39.
    Hoehn KL, Salmon AB, Hohnen-Behrens C et al. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA 2009; 106:17787–17792.PubMedCrossRefGoogle Scholar
  40. 40.
    Breathnach CS. Johann Ludwig Wilhelm Thudichum 1829–1901, bane of the Protagonisers. Hist Psychiatry 2001; 12:283–296.PubMedCrossRefGoogle Scholar
  41. 41.
    Thudichum JLW. In: A Treatise on the Chemical Constitution of the Brain, Baillière,Tindall and Cox, London, 1884.Google Scholar
  42. 42.
    Sourkes TL. In: The Life and Work of Thudichum JLW, 1829–1901: A Most Celebrated Exponent of the Art of Medicine and Chemistry. Montreal: McGill University, 2003.Google Scholar
  43. 43.
    Merrill AH Jr, Wang MD, Park M et al. (Glyco)sphingolipidology: an amazing challenge and opportunity for systems biology. Trends Biochem Sci 2007; 32:457–468.PubMedCrossRefGoogle Scholar
  44. 44.
    Sud M, Fahy E, Cotter D et al. LMSD: LIPID MAPS structure database. Nucleic acids Res 2007; 35(Database issue):D527–D532.PubMedCrossRefGoogle Scholar
  45. 45.
    Futerman AH. Intracellular trafficking of sphingolipids: relationship to biosynthesis. Biochim Biophys Acta 2006; 1758:1885–1892.PubMedCrossRefGoogle Scholar
  46. 46.
    Futerman AH, Riezman H. The ins and outs of sphingolipid synthesis. Trends Cell Biol 2005; 15:312–318.PubMedCrossRefGoogle Scholar
  47. 47.
    Schulze H, Kolter T, Sandhoff K. Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation. Biochim Biophys Acta 2009; 1793:674–683.PubMedCrossRefGoogle Scholar
  48. 48.
    Lahiri S, Futerman AH. The metabolism and function of sphingolipids and glycosphingolipids. Cell Mol Life Sci 2007; 64:2270–2284.PubMedCrossRefGoogle Scholar
  49. 49.
    Merrill AH jr, Schmelz EM, Dillehay DL et al. Sphingolipids-the enigmatic lipid class: biochemistry, physiology and pathophysiology. Toxicol Appl Pharmacol 1997; 142:208–225.PubMedCrossRefGoogle Scholar
  50. 50.
    Kitatani K, Idkowiak-Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 2008; 20:1010–1018.PubMedCrossRefGoogle Scholar
  51. 51.
    De Matteis MA, Di Campli A, D’Angelo G. Lipid-transfer proteins in membrane trafficking at the Golgi complex. Biochim Biophys Acta 2007; 1771:761–768.PubMedGoogle Scholar
  52. 52.
    Hanada K, Kumagai K, Yasuda S et al. Molecular machinery for nonvesicular trafficking of ceramide. Nature 2003; 426:803–809.PubMedCrossRefGoogle Scholar
  53. 53.
    Hanada K, Kumagai K, Tomishige N et al. CERT-mediated trafficking of ceramide. Biochim Biophys Acta 2009; 1791:684–691.PubMedGoogle Scholar
  54. 54.
    Bosio A, Binczek E, Le Beau MM et al. The human gene CGT encoding the UDP-galactose ceramide galactosyl transferase (cerebroside synthase): cloning, characterization and assignment to human chromosome 4, band q26. Genomics 1996; 34:69–75.PubMedCrossRefGoogle Scholar
  55. 55.
    Giussani P, Colleoni T, Brioschi L et al. Ceramide traffic in C6 glioma cells: evidence for CERT-dependent and independent transport from ER to the Golgi apparatus. Biochim Biophys Acta 2008; 1781:40–51.PubMedGoogle Scholar
  56. 56.
    Ardail D, Popa I, Bodennec J et al. The mitochondria-associated endoplasmic-reticulum subcompartment (MAM fraction) of rat liver contains highly active sphingolipid-specific glycosyltransferases. Biochem J 2003;371(Pt3):1013–1019.PubMedCrossRefGoogle Scholar
  57. 57.
    Coste H, Martel MB, Azzar G et al. UDP glucose-ceramide glucosyltransferase from porcine submaxillary glands is associated with the Golgi apparatus. Biochem Biophys Acta 1985; 814:1–7.PubMedCrossRefGoogle Scholar
  58. 58.
    Ichikawa S, Sakiyama H, Suzuki G et al. Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the First glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci USA 1996; 93:12654.PubMedCrossRefGoogle Scholar
  59. 59.
    Ichikawa S, Hirabayashi Y. Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 1998; 8:198–202.PubMedCrossRefGoogle Scholar
  60. 60.
    Buton X, Hervé P, Kubelt J et al. Transbilayer movement of monohexosylsphingolipids in endoplasmic reticulum and Golgi membranes. Biochemistry 2002; 41:13106–13115.PubMedCrossRefGoogle Scholar
  61. 61.
    Eckford PD, Sharom FJ. The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids. Biochem J 2005; 389(Pt 2):517–526.PubMedCrossRefGoogle Scholar
  62. 62.
    D’Angelo G, Polishchuk E, Di Tullio G et al. Glycosphingolipid synthesis requiRes FAPP2 transfer of glucosylceramide. Nature 2007; 449:62–67.PubMedCrossRefGoogle Scholar
  63. 63.
    De Matteis MA, Luini A. Exiting the Golgi complex. Nat Rev Mol Cell Biol 2008; 9:273–284.PubMedCrossRefGoogle Scholar
  64. 64.
    Halter D, Neumann S, van Dijk SM et al. Pre-and postGolgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 2007; 179:101–115.PubMedCrossRefGoogle Scholar
  65. 65.
    Neumann S, van Meer G. Sphingolipid management by an orchestra of lipid transfer proteins. Biol Chem 2008; 389:1349–1360.PubMedCrossRefGoogle Scholar
  66. 66.
    Svennerholm L. The gangliosides. J Lipid Res 1964; 5:145–155.PubMedGoogle Scholar
  67. 67.
    Kolter T, Proia RL, Sandhoff K. Combinatorial ganglioside biosynthesis. J Biol Chem 2002; 277:25859–25862.PubMedCrossRefGoogle Scholar
  68. 68.
    Schulze H, Kolter T, Sandhoff K. Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation. Biochim Biophys Acta 2009; 1793:674–683.PubMedCrossRefGoogle Scholar
  69. 69.
    Aerts JM, van Weely S, Boot R et al. Pathogenesis of lysosomal storage disorders as illustrated by Gaucher disease. J Inherit Metab Dis 1993; 16:288–291.PubMedCrossRefGoogle Scholar
  70. 70.
    Miao S, McCarter JD, Grace ME et al. Identification of Glu340 as the active-site nucleophile in human glucocerebrosidase by use of electrospray tandem mass spectrometry. J Biol Chem 1994; 269:10975–10978.PubMedGoogle Scholar
  71. 71.
    Dvir H, Harel M, McCarthy AA et al. X-ray structure of human acid-beta-glucosidase, the defective enzyme in Gaucher disease. EMBO Rep 2003; 4:704–709.PubMedCrossRefGoogle Scholar
  72. 72.
    Rossmann M, Schultz-Heienbrok R, Behlke J et al. Crystal structures of human saposins C and D: implications for lipid recognition and membrane interactions. Structure 2008; 16:809–817.PubMedCrossRefGoogle Scholar
  73. 73.
    Le Stunff H, Milstien S, Spiegel S. Generation and metabolism of bioactive sphingosine-1-phosphate. J Cell Biochem 2004; 92:882–899.PubMedCrossRefGoogle Scholar
  74. 74.
    Trinchera M, Ghidoni R, Sonnino S et al. Recycling of glucosylceramide and sphingosine for the biosynthesis of gangliosides and sphingomyelin in rat liver. Biochem J 1990; 270:815–820.PubMedGoogle Scholar
  75. 75.
    Prinetti A, Chigorno V, Mauri L et al. Modulation of cell functions by glycosphingolipid metabolic remodeling in the plasma membrane. J Neurochem 2007; 103(Suppl. 1):113–125.PubMedCrossRefGoogle Scholar
  76. 76.
    van Weely S, Brandsma M, Strijland A et al. Demonstration of the existence of a second, nonlysosomal glucocerebrosidase that is not deficient in Gaucher disease. Biochim Biophys Acta 1993; 1181:55–62.PubMedGoogle Scholar
  77. 77.
    Boot RG, Verhoek M, Donker-Koopman W et al. Identification of the nonlysosomal glucosylceramidase as beta-glucosidase 2. J Biol Chem 2007; 282(2):1305–1312.PubMedCrossRefGoogle Scholar
  78. 78.
    Yildiz Y, Matern H, Thompson B et al. Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest 2008; 116:2985–2994.CrossRefGoogle Scholar
  79. 79.
    Priestman DA, van der Spoel AC, Butters TD et al. N-butyldeoxynojirimycin causes weight loss as a result of appetite suppression in lean and obese mice. Diabetes Obes Metab 2008; 10:159–166.PubMedGoogle Scholar
  80. 80.
    Walden CM, Sandhoff R, Chuang CC et al. Accumulation of glucosylceramide in murine testis, caused by inhibition of beta-glucosidase 2: implications for spermatogenesis. J Biol Chem 2007; 282:32655–32664.PubMedCrossRefGoogle Scholar
  81. 81.
    Beutler E, Grabowski GA. In: Scriver CR et al eds. The Metabolic and Molecular Basis of Inherited Diseases. New York: McGraw-Hill, 2001:3635–3668.Google Scholar
  82. 82.
    Aerts JM, Donker-Koopman WE, Koot M et al. Deficient activity of glucocerebrosidase in urine from patients with type 1 Gaucher disease. Clin Chim Acta 1986; 158:155–163.PubMedCrossRefGoogle Scholar
  83. 83.
    Aerts JM, Donker-Koopman WE, van der Vliet MK et al. The occurrence of two immunologically distinguishable beta-glucocerebrosidases in human spleen. Eur J Biochem 1985; 150:565–574.PubMedCrossRefGoogle Scholar
  84. 84.
    Jonsson LM, Murray GJ, Sorrell SH et al. Biosynthesis and maturation of glucocerebrosidase in Gaucher fibroblasts. Eur J Biochem 1987; 164:171–179.PubMedCrossRefGoogle Scholar
  85. 85.
    Van Weely S, Van Leeuwen MB, Jansen ID et al. Clinical phenotype of Gaucher disease in relation to properties of mutant glucocerebrosidase in cultured fibroblasts. Biochim Biophys Acta 1991; 1096:301–311.PubMedGoogle Scholar
  86. 86.
    Ohashi T, Hong CM, Weiler S et al. Characterization of human glucocerebrosidase from different mutant alleles. J Biol Chem 1991; 266:3661–3667.PubMedGoogle Scholar
  87. 87.
    van Weely S, van den Berg M, Barranger JA et al. Role of pH in determining the cell-type-specific residual activity of glucocerebrosidase in type 1 Gaucher disease. J Clin Invest 1993; 91:1167–1175.PubMedCrossRefGoogle Scholar
  88. 88.
    Aerts JM, Schram AW, Strijland A et al. Glucocerebrosidase, a lysosomal enzyme that does not undergo oligosaccharide phosphorylation. Biochim Biophys Acta 1988; 964:303–308.PubMedGoogle Scholar
  89. 89.
    Reczek D, Schwake M, Schröder J et al. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 2007; 131:770–783.PubMedCrossRefGoogle Scholar
  90. 90.
    Blanz J, Groth J, Zachos C et al. Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand ta-glucocerebrosidase. Hum Mol Genet 2009 [Epub ahead of print].Google Scholar
  91. 91.
    Balreira A, Gaspar P, Caiola D et al. A nonsense mutation in the LIMP-2 gene associated with progressive myoclonic epilepsy and nephrotic syndrome. Hum Mol Genet 2008; 17:2238–2243.PubMedCrossRefGoogle Scholar
  92. 92.
    Tylki-Szymanska A, Czartoryska B, Vanier MT et al. Non-neuronopathic Gaucher disease due to saposin C deficiency. Clin Genet 2007; 72:538–542.PubMedCrossRefGoogle Scholar
  93. 93.
    Boot RG, Verhoek M, de Fost M et al. Marked elevation of the chemokine CCL18/PARC in Gaucher disease: a novel surrogate marker for assessing therapeutic intervention. Blood 2004; 103:33–39.PubMedCrossRefGoogle Scholar
  94. 94.
    Hollak CE, van Weely S, van Oers MH et al. Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J Clin Invest 1994; 93:1288–1292.PubMedCrossRefGoogle Scholar
  95. 95.
    Aerts JM, Hollak CE, van Breemen M et al. Identification and use of biomarkers in Gaucher disease and other lysosomal storage diseases. Acta Paediatr Suppl 2005; 94:43–46.PubMedCrossRefGoogle Scholar
  96. 96.
    Boven LA, van Meurs M, Boot RG et al. Gaucher cells demonstrate a distinct macrophage phenotype and resemble alternatively activated macrophages. Am J Clin Pathol 2004; 122:359–369.PubMedCrossRefGoogle Scholar
  97. 97.
    Hannun YA, Luberto C. Ceramide in the eukaryotic stress response. Trends Cell Biol 2000; 10:73–80.PubMedCrossRefGoogle Scholar
  98. 98.
    Unger RH: Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology 2003; 144:5159–5165.PubMedCrossRefGoogle Scholar
  99. 99.
    Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res 2006; 45:42–72.PubMedCrossRefGoogle Scholar
  100. 100.
    Holland WL, Knotts TA, Chavez JA et al. Lipid mediators of insulin resistance. Nutr Rev 2007; 65: S39–S46.PubMedCrossRefGoogle Scholar
  101. 101.
    Holland WL, Summers SA. Sphingolipids, insulin resistance and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr Rev 2008; 29:381–402.PubMedCrossRefGoogle Scholar
  102. 102.
    Schmitz-Peiffer C, Craig DL, Biden TJ. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 1999; 274:24202–24210.PubMedCrossRefGoogle Scholar
  103. 102.
    Sabin MA, Stewart CE, Crowne EC et al. Fatty acid-induced defects in insulin signalling, in myotubes derived from children, are related to ceramide production from palmitate rather than the accumulation of intramyocellular lipid. J Cell Physiol 2007; 211:244–252.PubMedCrossRefGoogle Scholar
  104. 104.
    Chavez JA, Knotts TA, Wang LP et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 2003; 278:10297–10303.PubMedCrossRefGoogle Scholar
  105. 105.
    Powell DJ, Turban S, Gray A et al. Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat l6 skeletal muscle cells. Biochem J 2004; 382:619–629.PubMedCrossRefGoogle Scholar
  106. 106.
    Pickersgill L, Litherland GJ, Greenberg AS et al. Key role for ceramides in mediating insulin resistance in human muscle cells. J Biol Chem 2007; 282:12583–12589.PubMedCrossRefGoogle Scholar
  107. 107.
    Chavez JA, Holland WL, Bar J et al. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem 2005; 280:20148–20153.PubMedCrossRefGoogle Scholar
  108. 108.
    Mei J, Wang CN, O’Brien L et al. Cell-permeable ceramides increase basal glucose incorporation into triacylglycerols but decrease the stimulation by insulin in 3T3-L1 adipocytes. Int J Obes Relat Metab Disord 2003; 27:31–39.PubMedCrossRefGoogle Scholar
  109. 109.
    Summers SA, Garza LA, Zhou H et al. Regulation of insulin stimulated glucose transporter GLUT4 translocation and akt kinase activity by ceramide. Mol Cell Biol 1998; 18:5457–5464.PubMedGoogle Scholar
  110. 110.
    Brindley DN, Wang CN, Mei J et al. Tumor necrosis factor-alpha and ceramides in insulin resistance. Lipids 1999; 34:S85–S88.PubMedCrossRefGoogle Scholar
  111. 111.
    Long SD, Pekala PH. Lipid mediators of insulin resistance: ceramide signalling down-regulates GLUT4 gene transcription in 3T3-L1 adipocytes. Biochem J 1996; 319:179–184.PubMedGoogle Scholar
  112. 112.
    Stratford S, Hoehn KL, Liu F et al. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 2004; 279:33615–36608.CrossRefGoogle Scholar
  113. 113.
    Turinsky J, O’Sullivan DM, Bayly BP. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem 1990; 265:16880–16885.PubMedGoogle Scholar
  114. 114.
    Holland WL, Brozinick JT, Wang LP et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-and obesity-induced insulin resistance. Cell Metab 2007; 5:167–179.PubMedCrossRefGoogle Scholar
  115. 115.
    Langeveld M, Aerts JM. Glycosphingolipids and insulin resistance. Prog Lipid Res 2009; 48:196–205.PubMedCrossRefGoogle Scholar
  116. 116.
    Lee JS, Pinnamaneni SK, Eo SJ et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. J Appl Physiol 2006; 100:1467–1474.PubMedCrossRefGoogle Scholar
  117. 117.
    Zhao H, Przybylska M, Wu IH et al. Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes. Diabetes 2007; 56:1210–1218.PubMedCrossRefGoogle Scholar
  118. 118.
    Adams JM, Pratipanawatr T, Berria R et al. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes 2004; 53:25–31.PubMedCrossRefGoogle Scholar
  119. 119.
    Straczkowski M, Kowalska I, Baranowski M et al. Increased skeletal muscle ceramide level in men at risk of developing type 2 diabetes. Diabetologia 2007; 50:2366–2373.PubMedCrossRefGoogle Scholar
  120. 120.
    Skovbro M, Baranowski M, Skov-Jensen C et al. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia 2008;51:1253–1260.PubMedCrossRefGoogle Scholar
  121. 121.
    Straczkowski M, Kowalska I, Nikolajuk A et al. Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 2004; 53:1215–1221.PubMedCrossRefGoogle Scholar
  122. 122.
    Serlie MJ, Meijer AJ, Groener JE et al. Short-term manipulation of plasma free fatty acids does not change skeletal muscle concentrations of ceramide and glucosylceramide in lean and overweight subjects. J Clin Endocrinol Metab 2007; 92:1524–1529.PubMedCrossRefGoogle Scholar
  123. 123.
    Hojjati MR, Li Z, Jiang XC. Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta 2005; 1737:44–51.PubMedGoogle Scholar
  124. 124.
    Nojiri H, Stroud M, Hakomori S. A specific type of ganglioside as a modulator of insulin-dependent cell growth and insulin receptor tyrosine kinase activity. Possible association of ganglioside-induced inhibition of insulin receptor function and monocytic differentiation induction in HL-60 cells. J Biol Chem 1991; 266:4531–4537.PubMedGoogle Scholar
  125. 125.
    Tagami S, Inokuchi JJ, Kabayama K et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 2002; 277:3085–3092.PubMedCrossRefGoogle Scholar
  126. 126.
    Kabayama K, Sato T, Kitamura F et al. TNFalpha-induced insulin resistance in adipocytes as a membrane microdomain disorder: involvement of ganglioside GM3. Glycobiology 2005; 15:21–29.PubMedCrossRefGoogle Scholar
  127. 127.
    Yamashita T, Hashiramoto A, Haluzik M et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA 2003; 100:3445–3449.PubMedCrossRefGoogle Scholar
  128. 128.
    Yoshizumi S, Suzuki S, Hirai M et al. Increased hepatic expression of ganglioside-specific sialidase, NEU3, improves insulin sensitivity and glucose tolerance in mice. Metabolism 2007; 56:420–429.PubMedCrossRefGoogle Scholar
  129. 129.
    Fox TE, Han X, Kelly S et al. Diabetes alters sphingolipid metabolism in the retina: a potential mechanism of cell death in diabetic retinopathy. Diabetes 2006; 55:3573–3580.PubMedCrossRefGoogle Scholar
  130. 130.
    Kabayama K, Sato T, Saito K et al. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 2007; 104:13678–13683.PubMedCrossRefGoogle Scholar
  131. 131.
    Corssmit EP, Hollak CE, Endert E et al. Increased basal glucose production in type 1 Gaucher’s disease. J Clin Endocrinol Metab 1995; 80:2653–2657.PubMedCrossRefGoogle Scholar
  132. 132.
    Hollak CE, Corssmit EP, Aerts JM et al. Differential effects of enzyme supplementation therapy on manifestations of type 1 Gaucher disease. Am J Med 1997; 103:185–191.PubMedCrossRefGoogle Scholar
  133. 133.
    Langeveld M, Scheij S, Dubbelhuis P et al. Very low serum adiponectin levels in patients with type 1 Gaucher disease without overt hyperglycemia. Metabolism 2007; 56:314–319.PubMedCrossRefGoogle Scholar
  134. 134.
    Langeveld M, Ghauharali KJ, Sauerwein HP et al. Type I Gaucher disease, a glycosphingolipid storage disorder, is associated with insulin resistance. J Clin Endocrinol Metab 2008; 93:845–851.PubMedCrossRefGoogle Scholar
  135. 135.
    Ghauharali-van der Vlugt K, Langeveld M, Poppema A et al. Prominent increase in plasma ganglioside GM3 is associated with clinical manifestations of type I Gaucher disease. Clin Chim Acta 2008; 389:109–113.PubMedCrossRefGoogle Scholar
  136. 136.
    Langeveld M, de Fost M, Aerts JM et al. Overweight, insulin resistance and type II diabetes in type I Gaucher disease patients in relation to enzyme replacement therapy. Blood cells Mol Dis 2008; 40:428–432.PubMedCrossRefGoogle Scholar
  137. 137.
    Ucar SK, Coker M, Argin M et al. A cross-sectional, mono-centric pilot study of insulin resistance in enzyme replacement therapy patients with Gaucher type I without overweight. Mol Genet Metab 2009; 96:50–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Aerts JM, Hollak CE, Boot RG et al. Substrate reduction therapy of glycosphingolipid storage disorders. J Inherit Metab Dis 2006; 29:449–456.PubMedCrossRefGoogle Scholar
  139. 139.
    Platt FM, Neises GR, Dwek RA et al. N-butyldeoxynojirimycin is a novel inhibitor of glycolipid biosynthesis. J Biol Chem 1994; 269:8362–8365.PubMedGoogle Scholar
  140. 140.
    Cox T, Lachmann R, Hollak C et al. Novel oral treatment of Gaucher’s disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis. Lancet 2000; 355:1481–1485.PubMedCrossRefGoogle Scholar
  141. 141.
    Elstein D, Dweck A, Attias D et al. Oral maintenance clinical trial with miglustat for type I Gaucher disease: switch from or combination with intravenous enzyme replacement. Blood 2007; 110(7):2296–2301.PubMedCrossRefGoogle Scholar
  142. 142.
    Overkleeft HS, Renkema GH, Neele J et al. Generation of specific deoxynojirimycin-type inhibitors of the nonlysosomal glucosylceramidase. J Biol Chem 1998; 273:26522–26527.PubMedCrossRefGoogle Scholar
  143. 143.
    Aerts JM, Ottenhoff R, Powlson AS et al. Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 2007; 56:1341–1349.PubMedCrossRefGoogle Scholar
  144. 144.
    Wennekes T, van den Berg RJ, Donker W et al. Development of adamantan-1-yl-methoxy-functionalized 1-deoxynojirimycin derivatives as selective inhibitors of glucosylceramide metabolism in man. J Org Chem 2007; 72:1088–1097.PubMedCrossRefGoogle Scholar
  145. 145.
    Wennekes T, van den Berg RJ, Boot RG et al. Glycosphingolipids—nature, function and pharmacological modulation. Angew Chem Int Ed Engl 2009; 48:8848–8869.PubMedCrossRefGoogle Scholar
  146. 146.
    McEachern KA, Fung J, Komarnitsky S et al. A specific and potent inhibitor of glucosylceramide synthase for substrate inhibition therapy of Gaucher disease. Mol Genet Metab 2007; 91:259–267.PubMedCrossRefGoogle Scholar
  147. 147.
    Wennekes T Meijer AJ, Groen AK et al. Dual-action lipophilic iminosugar improves glycemic control in obese rodents by reduction of visceral glycosphingolipids and buffering of carbohydrate assimilation. J Med Chem 2009 [In press]Google Scholar
  148. 148.
    Shen C, Bullens D, Kasran A et al. Inhibition of glycolipid biosynthesis by N-(5-adamantane-l-yl-methoxy-pentyl)-deoxynojirimycin protects against the inflammatory response in hapten-induced colitis. Int Immunopharmacol 2004; 4:939–951.PubMedCrossRefGoogle Scholar
  149. 149.
    van Eijk M, Aten J, Bijl N et al. Reducing glycosphingolipid content in adipose tissue of obese mice restoRes insulin sensitivity, adipogenesis and reduces inflammation. PLoS One 2009; 4:e4723.PubMedCrossRefGoogle Scholar
  150. 150.
    Bijl N, Sokolović M, Vrins C et al. Modulation of glycosphingolipid metabolism significantly improves hepatic insulin sensitivity and reverses hepatic steatosis in mice. Hepatology 2009; 50:1431–1441.PubMedCrossRefGoogle Scholar
  151. 151.
    Bijl N, van Roomen CP, Triantis V et al. Reduction of glycosphingolipid biosynthesis stimulates biliary lipid secretion in mice. Hepatology 2009; 49:637–645.PubMedCrossRefGoogle Scholar
  152. 152.
    Zhao H, Przybylska M, Wu IH et al. Inhibiting glycosphingolipid synthesis ameliorates hepatic steatosis in obese mice. Hepatology 2009; 50:85–93.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Johannes M. Aerts
    • 1
  • Rolf G. Boot
    • 1
  • Marco van Eijk
    • 1
  • Johanna Groener
    • 1
  • Nora Bijl
    • 1
  • Elisa Lombardo
    • 1
  • Florence M. Bietrix
    • 1
  • Nick Dekker
    • 1
  • Albert K. Groen
    • 1
  • Roelof Ottenhoff
    • 1
  • Cindy van Roomen
    • 1
  • Jan Aten
    • 2
  • Mireille Serlie
    • 3
  • Mirjam Langeveld
    • 3
  • Tom Wennekes
    • 4
  • Hermen S. Overkleeft
    • 4
  1. 1.Department of Medical BiochemistryUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of PathologyUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Internal Medicine, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Leiden Institute of Chemistry, Department of Bioorganic Synthesis, Gorlaeus LaboratoriesLeiden UniversityLeidenThe Netherlands

Personalised recommendations