Invariant NKT Cell-Based Vaccine Strategies

  • John-Paul Jukes
  • Jonathan D. Silk
  • Mariolina Salio
  • Vincenzo Cerundolo
Part of the Cancer Drug Discovery and Development book series (CDD&D)


The success of vaccination strategies depends on the efficient generation of appropriate antigen-specific T- and B-cell responses. The unique position of invariant natural killer T (iNKT) cells at the interface of the innate and adaptive immune systems and their ability to direct the maturation of dendritic cells and B cells offers the possibility of harnessing them to “jump-start” the antigen-specific immune response to both microbial pathogen and tumor antigens. In this chapter, we explore the development of pharmacological agents that when used in vaccination strategies as adjuvants to antigenic proteins are able to activate iNKT cells which then augment antigen-specific T- and B-cell responses. In addition, we consider the future directions and challenges in translating these findings from experimental data obtained in mice to use in the clinic.


Dendritic Cell iNKT Cell Vaccination Strategy Dendritic Cell Maturation Invariant Natural Killer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Moira Johnson for editorial advice and assistance. J.-P. J. is supported by a program grant from The Wellcome Trust. J.S. and M.S. are supported by CRUK (program grant and ECMC stream). Research in the Human Immunology Unit is supported by the Medical Research Council.


  1. Akbari O, Stock P, Meyer EH et al (2008) ICOS/ICOSL interaction is required for CD4+ invariant NKT cell function and homeostatic survival. J Immunol 180: 5448–5456.PubMedGoogle Scholar
  2. Amprey JL, Im JS, Turco SJ et al (2004) A subset of liver NK T cells is activated during Leishmania donovani infection by CD1d-bound lipophosphoglycan. J Exp Med 200: 895–904.PubMedCrossRefGoogle Scholar
  3. Asano K, Nabeyama A, Miyake Y et al (2011) CD169-Positive Macrophages Dominate Antitumor Immunity by Crosspresenting Dead Cell-Associated Antigens. Immunity 34: 85–95.PubMedCrossRefGoogle Scholar
  4. Balk SP, Bleicher PA, and Terhorst C (1989) Isolation and characterization of a cDNA and gene coding for a fourth CD1 molecule. Proc Natl Acad Sci USA 86: 252–256.PubMedCrossRefGoogle Scholar
  5. Barral P, Eckl-Dorna J, Harwood NE et al (2008) B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proc Natl Acad Sci USA 105: 8345–8350.PubMedCrossRefGoogle Scholar
  6. Barral P, Polzella P, Bruckbauer A et al (2010) CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 11: 303–312.PubMedCrossRefGoogle Scholar
  7. Batista FD, and Harwood NE (2009) The who, how and where of antigen presentation to B cells. Nat Rev Immunol 9: 15–27.PubMedCrossRefGoogle Scholar
  8. Bevan MJ (2006) Cross-priming. Nat Immunol 7: 363–365.PubMedCrossRefGoogle Scholar
  9. Borg NA, Wun KS, Kjer-Nielsen L et al (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448: 44–49.PubMedCrossRefGoogle Scholar
  10. Brigl M, Bry L, Kent SC et al (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4: 1230–1237.PubMedCrossRefGoogle Scholar
  11. Cerundolo V, Silk JD, Masri SH et al (2009) Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 9: 28–38.PubMedCrossRefGoogle Scholar
  12. Chang DH, Osman K, Connolly J et al (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201: 1503–1517.PubMedCrossRefGoogle Scholar
  13. Chang WS, Kim JY, Kim YJ et al (2008) Cutting edge: Programmed death-1/programmed death ligand 1 interaction regulates the induction and maintenance of invariant NKT cell anergy. J Immunol 181: 6707–6710.PubMedGoogle Scholar
  14. Coquet JM, Chakravarti S, Kyparissoudis K et al (2008) Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1- NKT cell population. Proc Natl Acad Sci USA 105: 11287–11292.PubMedCrossRefGoogle Scholar
  15. Cox D, Fox L, Tian R et al (2009) Determination of cellular lipids bound to human CD1d molecules. PLoS One 4: e5325.PubMedCrossRefGoogle Scholar
  16. Crowe NY, Smyth MJ, and Godfrey DI (2002) A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J Exp Med 196: 119–127.PubMedCrossRefGoogle Scholar
  17. Cullen R, Germanov E, Shimaoka T et al (2009) Enhanced tumor metastasis in response to ­blockade of the chemokine receptor CXCR6 is overcome by NKT cell activation. J Immunol 183: 5807–5815.PubMedCrossRefGoogle Scholar
  18. De Santo C, Arscott R, Booth S et al (2010) Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11: 1039–1046.PubMedCrossRefGoogle Scholar
  19. De Santo C, Salio M, Masri SH et al (2008) Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 118: 4036–4048.PubMedCrossRefGoogle Scholar
  20. Fischer K, Scotet E, Niemeyer M et al (2004) Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci USA 101: 10685–10690.PubMedCrossRefGoogle Scholar
  21. Fox LM, Cox DG, Lockridge JL et al (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7: e1000228.PubMedCrossRefGoogle Scholar
  22. Fujii S, Liu K, Smith C et al (2004) The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J Exp Med 199: 1607–1618.PubMedCrossRefGoogle Scholar
  23. Fujii S, Shimizu K, Kronenberg M et al (2002) Prolonged IFN-gamma-producing NKT response induced with alpha-galactosylceramide-loaded DCs. Nat Immunol 3: 867–874.PubMedCrossRefGoogle Scholar
  24. Fujii S, Shimizu K, Smith C et al (2003) Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198: 267–279.PubMedCrossRefGoogle Scholar
  25. Galli G, Nuti S, Tavarini S et al (2003) CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J Exp Med 197: 1051–1057.PubMedCrossRefGoogle Scholar
  26. Galli G, Pittoni P, Tonti E et al (2007) Invariant NKT cells sustain specific B cell responses and memory. Proc Natl Acad Sci USA 104: 3984–3989.PubMedCrossRefGoogle Scholar
  27. Giaccone G, Punt CJ, Ando Y et al (2002) A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8: 3702–3709.PubMedGoogle Scholar
  28. Godfrey DI, Stankovic S, and Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11: 197–206.PubMedCrossRefGoogle Scholar
  29. Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC et al (2002) Natural killer T cell ligand alpha-galactosylceramide enhances protective immunity induced by malaria vaccines. J Exp Med 195: 617–624.PubMedCrossRefGoogle Scholar
  30. Guillonneau C, Mintern JD, Hubert FX et al (2009) Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. Proc Natl Acad Sci USA 106: 3330–3335.PubMedCrossRefGoogle Scholar
  31. Halder RC, Aguilera C, Maricic I et al (2007) Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J Clin Invest 117: 2302–2312.PubMedCrossRefGoogle Scholar
  32. Hammond KJ, Pelikan SB, Crowe NY et al (1999) NKT cells are phenotypically and functionally diverse. Eur J Immunol 29: 3768–3781.PubMedCrossRefGoogle Scholar
  33. Hermans IF, Silk JD, Gileadi U et al (2003) NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 171: 5140–5147.PubMedGoogle Scholar
  34. Ho LP, Denney L, Luhn K et al (2008) Activation of invariant NKT cells enhances the innate immune response and improves the disease course in influenza A virus infection. Eur J Immunol 38: 1913–1922.PubMedCrossRefGoogle Scholar
  35. Huang Y, Chen A, Li X et al (2008) Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine 26: 1807–1816.PubMedCrossRefGoogle Scholar
  36. Ishihara S, Nieda M, Kitayama J et al (1999) CD8(+)NKR-P1A (+)T cells preferentially accumulate in human liver. Eur J Immunol 29: 2406–2413.PubMedCrossRefGoogle Scholar
  37. Ishikawa A, Motohashi S, Ishikawa E et al (2005) A phase I study of alpha-galactosylceramide (KRN7000)-pulsed dendritic cells in patients with advanced and recurrent non-small cell lung cancer. Clin Cancer Res 11: 1910–1917.PubMedCrossRefGoogle Scholar
  38. Jiang X, Shimaoka T, Kojo S et al (2005) Cutting edge: critical role of CXCL16/CXCR6 in NKT cell trafficking in allograft tolerance. J Immunol 175: 2051–2055.PubMedGoogle Scholar
  39. Kamijuku H, Nagata Y, Jiang X et al (2008) Mechanism of NKT cell activation by intranasal coadministration of alpha-galactosylceramide, which can induce cross-protection against influenza viruses. Mucosal Immunol 1: 208–218.PubMedCrossRefGoogle Scholar
  40. Kawano T, Cui J, Koezuka Y et al (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278: 1626–1629.PubMedCrossRefGoogle Scholar
  41. Kim S, Lalani S, Parekh VV et al (2008) Impact of bacteria on the phenotype, functions, and therapeutic activities of invariant NKT cells in mice. J Clin Invest 118: 2301–2315.PubMedGoogle Scholar
  42. Kinjo Y, Pei B, Bufali S et al (2008) Natural Sphingomonas glycolipids vary greatly in their ability to activate natural killer T cells. Chem Biol 15: 654–664.PubMedCrossRefGoogle Scholar
  43. Kinjo Y, Tupin E, Wu D et al (2006) Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7: 978–986.PubMedCrossRefGoogle Scholar
  44. Kinjo Y, Wu D, Kim G et al (2005) Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434: 520–525.PubMedCrossRefGoogle Scholar
  45. Ko SY, Ko HJ, Chang WS et al (2005) alpha-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. J Immunol 175: 3309–3317.PubMedGoogle Scholar
  46. Koch M, Stronge VS, Shepherd D et al (2005) The crystal structure of human CD1d with and without alpha-galactosylceramide. Nat Immunol 6: 819–826.PubMedCrossRefGoogle Scholar
  47. Kunii N, Horiguchi S, Motohashi S et al (2009) Combination therapy of in vitro-expanded natural killer T cells and alpha-galactosylceramide-pulsed antigen-presenting cells in patients with recurrent head and neck carcinoma. Cancer Sci 100: 1092–1098.PubMedCrossRefGoogle Scholar
  48. Lanzavecchia A (1985) Antigen-specific interaction between T and B cells. Nature 314: 537–539.PubMedCrossRefGoogle Scholar
  49. Leadbetter EA, Brigl M, Illarionov P et al (2008) NK T cells provide lipid antigen-specific cognate help for B cells. Proc Natl Acad Sci USA 105: 8339–8344.PubMedCrossRefGoogle Scholar
  50. Lee WY, Moriarty TJ, Wong CH et al (2010) An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells. Nat Immunol 11: 295–302.PubMedCrossRefGoogle Scholar
  51. Li X, Fujio M, Imamura M et al (2010) Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc Natl Acad Sci USA 107: 13010–13015.PubMedCrossRefGoogle Scholar
  52. Liu K, Idoyaga J, Charalambous A et al (2005) Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med 202: 1507–1516.PubMedCrossRefGoogle Scholar
  53. Macdonald HR (2007) NKT cells: In the beginning. Eur J Immunol 37 Suppl 1: S111-115.PubMedCrossRefGoogle Scholar
  54. Mallevaey T, Scott-Browne JP, Matsuda JL et al (2009) T cell receptor CDR2 beta and CDR3 beta loops collaborate functionally to shape the iNKT cell repertoire. Immunity 31: 60–71.PubMedCrossRefGoogle Scholar
  55. Matsuda JL, Gapin L, Baron JL et al (2003) Mouse V alpha 14i natural killer T cells are resistant to cytokine polarization in vivo. Proc Natl Acad Sci USA 100: 8395–8400.PubMedCrossRefGoogle Scholar
  56. Matsuda JL, Mallevaey T, Scott-Browne J et al (2008) CD1d-restricted iNKT cells, the ‘Swiss-Army knife’ of the immune system. Curr Opin Immunol 20: 358–368.PubMedCrossRefGoogle Scholar
  57. Mattner J, Debord KL, Ismail N et al (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434: 525–529.PubMedCrossRefGoogle Scholar
  58. Mattner J, Savage PB, Leung P et al (2008) Liver autoimmunity triggered by microbial activation of natural killer T cells. Cell Host Microbe 3: 304–315.PubMedCrossRefGoogle Scholar
  59. McCarthy C, Shepherd D, Fleire S et al (2007) The length of lipids bound to human CD1d molecules modulates the affinity of NKT cell TCR and the threshold of NKT cell activation. J Exp Med 204: 1131–1144.PubMedCrossRefGoogle Scholar
  60. Miyamoto K, Miyake S, and Yamamura T (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413: 531–534.PubMedCrossRefGoogle Scholar
  61. Morita M, Motoki K, Akimoto K et al (1995) Structure-activity relationship of alpha-galactosylceramides against B16-bearing mice. J Med Chem 38: 2176–2187.PubMedCrossRefGoogle Scholar
  62. Motohashi S, Nagato K, Kunii N et al (2009) A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 182: 2492–2501.PubMedCrossRefGoogle Scholar
  63. Nagarajan NA, and Kronenberg M (2007) Invariant NKT cells amplify the innate immune response to lipopolysaccharide. J Immunol 178: 2706–2713.PubMedGoogle Scholar
  64. Nieda M, Okai M, Tazbirkova A et al (2004) Therapeutic activation of Valpha24  +  Vbeta11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103: 383–389.PubMedCrossRefGoogle Scholar
  65. O’Konek JJ, Illarionov P, Khursigara DS et al (2011) Mouse and human iNKT cell agonist beta-mannosylceramide reveals a distinct mechanism of tumor immunity. J Clin Invest 121: 683–694.PubMedCrossRefGoogle Scholar
  66. Paget C, Mallevaey T, Speak AO et al (2007) Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27: 597–609.PubMedCrossRefGoogle Scholar
  67. Parekh VV, Wilson MT, Olivares-Villagomez D et al (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115: 2572–2583.PubMedCrossRefGoogle Scholar
  68. Pellicci DG, Patel O, Kjer-Nielsen L et al (2009) Differential recognition of CD1d-alpha-galactosyl ceramide by the V beta 8.2 and V beta 7 semi-invariant NKT T cell receptors. Immunity 31: 47–59.PubMedCrossRefGoogle Scholar
  69. Petersen TR, Sika-Paotonu D, Knight DA et al (2010) Potent anti-tumor responses to immunization with dendritic cells loaded with tumor tissue and an NKT cell ligand. Immunol Cell Biol 88: 596–604.PubMedCrossRefGoogle Scholar
  70. Reddy BG, Silk JD, Salio M et al (2009) Nonglycosidic agonists of invariant NKT cells for use as vaccine adjuvants. ChemMedChem 4: 171–175.PubMedCrossRefGoogle Scholar
  71. Sada-Ovalle I, Chiba A, Gonzales A et al (2008) Innate invariant NKT cells recognize Mycobacterium tuberculosis-infected macrophages, produce interferon-gamma, and kill intracellular bacteria. PLoS Pathog 4: e1000239.PubMedCrossRefGoogle Scholar
  72. Salio M, and Cerundolo V (2009) Linking inflammation to natural killer T cell activation. PLoS Biol 7: e1000226.PubMedCrossRefGoogle Scholar
  73. Salio M, Speak AO, Shepherd D et al (2007) Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc Natl Acad Sci USA 104: 20490–20495.PubMedCrossRefGoogle Scholar
  74. Savage PB, Teyton L, and Bendelac A (2006) Glycolipids for natural killer T cells. Chem Soc Rev 35: 771–779.PubMedCrossRefGoogle Scholar
  75. Scott-Browne JP, Matsuda JL, Mallevaey T et al (2007) Germline-encoded recognition of diverse glycolipids by natural killer T cells. Nat Immunol 8: 1105–1113.PubMedCrossRefGoogle Scholar
  76. Semmling V, Lukacs-Kornek V, Thaiss CA et al (2010) Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol 11: 313–320.PubMedCrossRefGoogle Scholar
  77. Shimizu K, Goto A, Fukui M et al (2007a) Tumor cells loaded with alpha-galactosylceramide induce innate NKT and NK cell-dependent resistance to tumor implantation in mice. J Immunol 178: 2853–2861.PubMedGoogle Scholar
  78. Shimizu K, Kurosawa Y, Taniguchi M et al (2007b) Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med 204: 2641–2653.PubMedCrossRefGoogle Scholar
  79. Silk JD, Hermans IF, Gileadi U et al (2004) Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J Clin Invest 114: 1800–1811.PubMedGoogle Scholar
  80. Silk JD, Salio M, Reddy BG et al (2008) Cutting edge: nonglycosidic CD1d lipid ligands activate human and murine invariant NKT cells. J Immunol 180: 6452–6456.PubMedGoogle Scholar
  81. Smyth MJ, Thia KY, Street SE et al (2000) Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191: 661–668.PubMedCrossRefGoogle Scholar
  82. Stober D, Jomantaite I, Schirmbeck R et al (2003) NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J Immunol 170: 2540–2548.PubMedGoogle Scholar
  83. Taraban VY, Martin S, Attfield KE et al (2008) Invariant NKT cells promote CD8+ cytotoxic T cell responses by inducing CD70 expression on dendritic cells. J Immunol 180: 4615–4620.PubMedGoogle Scholar
  84. Tonti E, Galli G, Malzone C et al (2009) NKT-cell help to B lymphocytes can occur independently of cognate interaction. Blood 113: 370–376.PubMedCrossRefGoogle Scholar
  85. Uchida T, Horiguchi S, Tanaka Y et al (2008) Phase I study of alpha-galactosylceramide-pulsed antigen presenting cells administration to the nasal submucosa in unresectable or recurrent head and neck cancer. Cancer Immunol Immunother 57: 337–345.PubMedCrossRefGoogle Scholar
  86. Uldrich AP, Crowe NY, Kyparissoudis K et al (2005) NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim-dependent contraction, and hyporesponsiveness to further antigenic challenge. J Immunol 175: 3092–3101.PubMedGoogle Scholar
  87. Vincent MS, Leslie DS, Gumperz JE et al (2002) CD1-dependent dendritic cell instruction. Nat Immunol 3: 1163–1168.PubMedCrossRefGoogle Scholar
  88. Wang J, Cheng L, Wondimu Z et al (2009) Cutting edge: CD28 engagement releases antigen-activated invariant NKT cells from the inhibitory effects of PD-1. J Immunol 182: 6644–6647.PubMedCrossRefGoogle Scholar
  89. Wang J, Li Y, Kinjo Y et al (2010) Lipid binding orientation within CD1d affects recognition of Borrelia burgorferi antigens by NKT cells. Proc Natl Acad Sci USA 107: 1535–1540.PubMedCrossRefGoogle Scholar
  90. Youn HJ, Ko SY, Lee KA et al (2007) A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine 25: 5189–5198.PubMedCrossRefGoogle Scholar
  91. Yuan W, Kang SJ, Evans JE et al (2009) Natural lipid ligands associated with human CD1d targeted to different subcellular compartments. J Immunol 182: 4784–4791.PubMedCrossRefGoogle Scholar
  92. Zaini J, Andarini S, Tahara M et al (2007) OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J Clin Invest 117: 3330–3338.PubMedCrossRefGoogle Scholar
  93. Zajonc DM, Cantu C, 3 rd, Mattner J et al (2005) Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat Immunol 6: 810–818.Google Scholar
  94. Zeng Z, Castano AR, Segelke BW et al (1997) Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277: 339–345.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • John-Paul Jukes
    • 1
  • Jonathan D. Silk
    • 1
  • Mariolina Salio
    • 1
  • Vincenzo Cerundolo
    • 2
  1. 1.MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
  2. 2.MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK

Personalised recommendations