Advertisement

Chemical Approaches to Produce Graphene Oxide and Related Materials

  • Alexander Sinitskii
  • James M. Tour
Chapter

Abstract

The “physical” separation of graphite layers with adhesive tape was a novel approach that spawned a flurry of activity but the chemical separation of graphite layers has been known for decades. The chapter starts off with a historical perspective of chemical exfoliation. The following topics are then discussed in detail: the morphology of chemically converted graphene (CCG) and graphene oxide (GO); models and supporting experiments that provide insight into the structural properties of GO; electrical characterization of CCG and GO; improvements made in CCG formation and functionalization of CCG; and, obtaining graphene ribbons from carbon nanotubes.

Keywords

Graphene Oxide Graphene Sheet Graphite Oxide Sodium Dodecylbenzene Sulfonate Chlorosulfonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162.CrossRefGoogle Scholar
  2. 2.
    Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nature Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  3. 3.
    Geim, A. K. Graphene: Status and Prospects. Science 2009, 324, 1530–1534.CrossRefGoogle Scholar
  4. 4.
    Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110, 132–145.CrossRefGoogle Scholar
  5. 5.
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  6. 6.
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-Dimensional Atomic Crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  7. 7.
    Novoselov, K. S. Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov A. A. Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature 2005, 438, 197–200.CrossRefGoogle Scholar
  8. 8.
    Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental Observation of the Quantum Hall Effect and Berry’s Phase in Graphene. Nature 2005, 438, 201–204.CrossRefGoogle Scholar
  9. 9.
    Brodie, B. C. On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London 1859, 149, 249–259.Google Scholar
  10. 10.
    Li, D.; Mueller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 2008, 3, 101–105.CrossRefGoogle Scholar
  11. 11.
    Zhou, X.; Zhang, J.; Wu, H.; Yang, H.; Zhang, J.; Guo, S. Reducing Graphene Oxide via Hydroxylamine: A Simple and Efficient Route to Graphene. J. Phys. Chem. C 2011, 115, 11957–11961.CrossRefGoogle Scholar
  12. 12.
    Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M. New Insights into the Structure and Reduction of Graphite Oxide. Nature Chem. 2009, 1, 403–408.CrossRefGoogle Scholar
  13. 13.
    Mohanty, N.; Nagaraja, A.; Armesto, J.; Berry, V. High-Throughput, Ultrafast Synthesis of Solution-Dispersed Graphene via a Facile Hydride Chemistry. Small 2010, 6, 226–231.CrossRefGoogle Scholar
  14. 14.
    Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr., C. A., Ruoff, R. S. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-Ray Photoelectron and Micro-Raman Spectroscopy. Carbon 2009, 47, 145–152.CrossRefGoogle Scholar
  15. 15.
    Cote, L. J.; Cruz-Silva, R.; Huang, J. Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite. J. Am. Chem. Soc. 2009, 131, 11027–11032.CrossRefGoogle Scholar
  16. 16.
    Dubin, S.; Gilje, S.; Wang, K.; Tung, V. C.; Cha. K.; Hall, A. S.; Farrar, J.; Varshneya, R.; Yang, Y.; Kaner, R. B. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents. ACS Nano 2010, 4, 3845–3852.CrossRefGoogle Scholar
  17. 17.
    Salas, E. C.; Sun, Z.; Lüttge, A.; Tour, J. M. Reduction of Graphene Oxide via Bacterial Respiration. ACS Nano 2010, 4, 4852–4856.CrossRefGoogle Scholar
  18. 18.
    Staudenmaier, L. Verfahren zur Darstellung der Graphitsäure Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.CrossRefGoogle Scholar
  19. 19.
    Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339.CrossRefGoogle Scholar
  20. 20.
    Boehm, H. P.; Clauss, A.; Fischer G. O.; Hofmann U. Dünnste Kohlenstoff-Folien. Z. Naturforschg. 1962, 17 b, 150–153.Google Scholar
  21. 21.
    Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814.CrossRefGoogle Scholar
  22. 22.
    Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565.CrossRefGoogle Scholar
  23. 23.
    Gilje, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner R. B. A Chemical Route to Graphene for Device Applications. Nano Lett. 2007, 7, 3394–3398.CrossRefGoogle Scholar
  24. 24.
    Gómez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Lett. 2007, 7, 3499–3503.CrossRefGoogle Scholar
  25. 25.
    Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. High-Throughput Solution Processing of Large-Scale Graphene. Nature Nanotech. 2009, 4, 25–29.CrossRefGoogle Scholar
  26. 26.
    Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud’homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B 2006, 110, 8535–8539.CrossRefGoogle Scholar
  27. 27.
    Sinitskii, A.; Kosynkin, D. V.; Dimiev, A.; Tour, J. M. Corrugation of Chemically Converted Graphene Monolayers on SiO2. ACS Nano 2010, 4, 3095–3102.CrossRefGoogle Scholar
  28. 28.
    Buchsteiner, A.; Lerf, A.; Pieper, J. Water Dynamics in Graphite Oxide Investigated with Neutron Scattering. J. Phys. Chem. B, 2006, 110, 22328–22338.CrossRefGoogle Scholar
  29. 29.
    Gómez-Navarro, C.; Meyer, J. C.; Sundaram, R. S.; Chuvilin, A.; Kurasch, S.; Burghard, M.; Kern, K.; Kaiser, U. Atomic Structure of Reduced Graphene Oxide. Nano Lett. 2010, 10, 1144–1148.CrossRefGoogle Scholar
  30. 30.
    Erickson, K.; Erni, R.; Lee, Z.; Alem, N.; Gannett, W.; Zettl, A. Determination of the Local Chemical Structure of GrapheneOxide and Reduced Graphene Oxide. Adv. Mater. 2010, 22, 4467–4472.CrossRefGoogle Scholar
  31. 31.
    Lerf, A.; He, H.; Forster, M.; Klinowski, J. Structure of Graphite Oxide Revisited. J. Phys. Chem. B 1998, 102, 4477–4482.CrossRefGoogle Scholar
  32. 32.
    He, H.; Klinowski, J.; Forster, M.; Lerf, A. A New Structural Model for Graphite Oxide. Chem. Phys. Lett. 1998, 287, 53–56.CrossRefGoogle Scholar
  33. 33.
    He, H.; Riedl, T.; Lerf, A.; Klinowski, J. Solid-State NMR Studies of the Structure of Graphite Oxide. J. Phys. Chem. 1996, 100, 19954–19958.CrossRefGoogle Scholar
  34. 34.
    Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem. Soc. Rev. 2010, 39, 228–240.CrossRefGoogle Scholar
  35. 35.
    Paci, J. T.; Belytschko, T.; Schatz, G. C. Computational Studies of the Structure, Behavior upon Heating, and Mechanical Properties of Graphite Oxide. J. Phys. Chem. C 2007, 111, 18099–18111.CrossRefGoogle Scholar
  36. 36.
    Jung, I.; Dikin, D.; Park, S.; Cai, W.; Mielke, S. L.; Ruoff, R. S. Effect of Water Vapor on Electrical Properties of Individual Reduced Graphene Oxide Sheets. J. Phys. Chem. C 2008, 112, 20264–20268.CrossRefGoogle Scholar
  37. 37.
    Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS Nano, 2008, 2, 463–470.CrossRefGoogle Scholar
  38. 38.
    Boukhvalov D. W.; Katsnelson, M. I. Modeling of Graphite Oxide. J. Am. Chem. Soc. 2008, 130, 10697–10701.CrossRefGoogle Scholar
  39. 39.
    Kim, M. C.; Hwang, G. S.; Ruoff, R. S. Epoxide Reduction with Hydrazine on Graphene: A First Principles Study. J. Chem. Phys. 2009, 131, 064704.CrossRefGoogle Scholar
  40. 40.
    Cai, W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D.; Velamakanni, A.; An, S. J.; Stoller, M.; An, J.; Chen, D.; Ruoff, R. S. Synthesis and Solid-State NMR Structural Characterization of 13C-Labeled Graphite Oxide. Science 2008, 321, 1815–1817.CrossRefGoogle Scholar
  41. 41.
    Jeong, H. K.; Lee, Y. P.; Lahaye, R. J. W. E.; Park, M. H.; An, K. H.; Kim, I. J.; Yang, C. W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H. Evidence of Graphitic AB Stacking Order of Graphite Oxides. J. Am. Chem. Soc. 2008, 130, 1362–1366.CrossRefGoogle Scholar
  42. 42.
    Stankovich, S.; Piner, R. D.; Chen, X.; Wu, N.; Nguyen S. T.; Ruoff R. S. Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155–158.CrossRefGoogle Scholar
  43. 43.
    Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of Individual Gas Molecules Adsorbed on Graphene. Nat. Mater. 2007, 6, 652–655.CrossRefGoogle Scholar
  44. 44.
    Eda, G.; Fanchini, G.; Chhowalla, M. Large-Area Ultrathin Films of Reduced Graphene Oxide as a Transparent and Flexible Electronic Material. Nat. Nanotech. 2009, 3, 270–274.CrossRefGoogle Scholar
  45. 45.
    Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at “Low” Temperatures. Nano Lett. 2008, 8, 4283–4287.CrossRefGoogle Scholar
  46. 46.
    Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal Reduction of Chemically Exfoliated Graphene Sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.CrossRefGoogle Scholar
  47. 47.
    Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Ponomarenko, L. A.; Jiang, D.; Geim, A. K. Strong Suppression of Weak Localization in Graphene. Phys. Rev. Lett. 2006, 97, 016801.CrossRefGoogle Scholar
  48. 48.
    Tan, Y. W.; Zhang, Y.; Stormer, H. L.; Kim, P. Temperature Dependent Electron Transport in Graphene. Eur. Phys. J. Special Topics 2007, 148, 15–18.CrossRefGoogle Scholar
  49. 49.
    Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P. Temperature-Dependent Transport in Suspended Graphene. Phys. Rev. Lett. 2008, 101, 096802.CrossRefGoogle Scholar
  50. 50.
    Kaiser, A. B.; Gómez-Navarro, C.; Sundaram, R. S.; Burghard, M.; Kern, K. Electrical Conduction Mechanism in Chemically Derived Graphene Monolayers. Nano Lett. 2009, 9, 1787–1792.CrossRefGoogle Scholar
  51. 51.
    Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H. K.; Chhowalla, M. Insulator to Semimetal Transition in Graphene Oxide. J. Phys. Chem. C, 2009, 113, 15768–15771.CrossRefGoogle Scholar
  52. 52.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, England, 1971.Google Scholar
  53. 53.
    Stolyarova, E.; Rim, K. T.; Ryu, S.; Maultzsch, J.; Kim, P.; Brus, L. E.; Heinz, T. F.; Hybertsen, M. S.; Flynn, G. W. High-Resolution Scanning Tunneling Microscopy Imaging of Mesoscopic Graphene Sheets on an Insulating Surface. Proc. Natl Acad. Sci. USA 2007, 104, 9209–9212.CrossRefGoogle Scholar
  54. 54.
    Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J. Boron Nitride Substrates for High-Quality Graphene Electronics. Nature Nanotech. 2010, 5, 722–726.CrossRefGoogle Scholar
  55. 55.
    Bolotin, K. I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J., Kim, P., Stormer, H. L. Ultrahigh Electron Mobility in Suspended Graphene. Solid State Comm. 2008, 146, 351–355.CrossRefGoogle Scholar
  56. 56.
    Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Approaching Ballistic Transport in Suspended Graphene. Nature Nanotech. 2008, 3, 491–496.CrossRefGoogle Scholar
  57. 57.
    Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679–1682.CrossRefGoogle Scholar
  58. 58.
    Paredes, J. I.; Villar-Rodil, S.; Martinez-Alonso, A.; Tascón, J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24, 10560–10564.CrossRefGoogle Scholar
  59. 59.
    Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.CrossRefGoogle Scholar
  60. 60.
    Luo, Z.; Lu, Y.; Somers, L. A.; Johnson, A. T. C. High Yield Preparation of Macroscopic Graphene Oxide Membranes. J. Am. Chem. Soc. 2009, 131, 898–899CrossRefGoogle Scholar
  61. 61.
    Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-Based Liquid Crystal Device. Nano Lett. 2008, 8, 1704–1708.CrossRefGoogle Scholar
  62. 62.
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchinson, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite. Nature Nanotech. 2008, 3, 563–568.CrossRefGoogle Scholar
  63. 63.
    Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A. R. High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Lett. 2009, 9, 3460–3462.CrossRefGoogle Scholar
  64. 64.
    Bahr, J. L.; Mickelson, E. T.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem. Commun. 2001, 193–194.Google Scholar
  65. 65.
    Hao, R.; Qian, W.; Zhang, L.; Hou, Y. Aqueous Dispersions of TCNQ-Anion-Stabilized Graphene Sheets. Chem. Commun. 2008, 6576–6578.Google Scholar
  66. 66.
    Davis, V. A.; Parra-Vasquez, A. N. G.; Green, M. J.; Rai, P. K.; Behabtu, N.; Prieto, V.; Booker, R. D.; Schmidt, J.; Kesselman, E.; Zhou, W.; Fan, H.; Adams, W. W.; Hauge, R. H.; Fischer, J. E.; Cohen, Y.; Talmon, Y.; Smalley, R. E.; Pasquali, M. True Solutions of Single-Walled Carbon Nanotubes for Assembly into Macroscopic Materials. Nature Nanotech. 2009, 4, 830–834.CrossRefGoogle Scholar
  67. 67.
    Behabtu, N.; Lomeda, J. R.; Green, M. J.; Higginbotham, A. L.; Sinitskii, A.; Kosynkin, D. V.; Tsentalovich, D.; Parra-Vasquez, A. N. G.; A; Schmidt, J.; Kesselman, E.; Cohen, Y.; Talmon, Y.; Tour, J. M.; Pasquali, M. Spontaneous High-Concentration Dispersions and Liquid Crystals of Graphene. Nature Nanotech. 2010, 5, 406–411.Google Scholar
  68. 68.
    Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.CrossRefGoogle Scholar
  69. 69.
    Onsager, L. The Effects of Shape on the Interaction of Colloidal Particles. Ann. NY Acad. Sci. 1949, 51, 627–659.CrossRefGoogle Scholar
  70. 70.
    Chandrasekhar, S. Liquid Crystals. Cambridge Univ. Press. 1992.Google Scholar
  71. 71.
    Dresselhaus, M. S.; Dresselhaus, G. Intercalation Compounds of Graphite. Adv. Phys. 1981, 30, 139–326.CrossRefGoogle Scholar
  72. 72.
    Enoki, T.; Suzuki, M.; Endo, M. Graphite Intercalation Compounds and Applications. Oxford Univ. Press. 2003.Google Scholar
  73. 73.
    Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahn H. T.; Kaner, R. B. Intercalation and Exfoliation Routes to Graphite Nanoplatelets. J. Mater. Chem. 2005, 15, 974–978.CrossRefGoogle Scholar
  74. 74.
    Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang E.; Dai, H. Highly Conducting Graphene Sheets and Langmuir–Blodgett Films. Nature Nanotech. 2008, 3, 538–542.CrossRefGoogle Scholar
  75. 75.
    Lee, J. H.; Shin, D. W.; Makotchenko, V. G.; Nazarov, A. S.; Fedorov, V. E.; Kim, Y. H.; Choi, J. Y.; Kim J. M.; Yoo, J. B. One-Step Exfoliation Synthesis of Easily Soluble Graphite and Transparent Conducting Graphene Sheets. Adv. Mater. 2009, 21, 4383–4387.CrossRefGoogle Scholar
  76. 76.
    Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A. Solutions of Negatively Charged Graphene Sheets and Ribbons. J. Am. Chem. Soc. 2008, 130, 15802–15804.CrossRefGoogle Scholar
  77. 77.
    Grayfer, E. D.; Nazarov, A. S.; Makotchenko, V. G.; Kim, S. J.; Fedorov, V. E. Chemically Modified Graphene Sheets by Functionalization of Highly Exfoliated Graphite. J. Mater. Chem. 2011, 21, 3410–3414.CrossRefGoogle Scholar
  78. 78.
    Fu, W.; Kiggans, J.; Overbury, S. H.; Schwartz, V.; Liang, C. Low-Temperature Exfoliation of Multilayer-Graphene Material from FeCl3 and CH3NO2 Co-Intercalated Graphite Compound. Chem. Commun. 2011, 47, 5265–5267.CrossRefGoogle Scholar
  79. 79.
    Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets. J. Am. Chem. Soc. 2008, 130, 16201–16206.CrossRefGoogle Scholar
  80. 80.
    Jin, Z.; Lomeda, J. R.; Price, B. P.; Lu, W.; Zhu, Y.; Tour, J. M. Mechanically Assisted Exfoliation and Functionalization of Thermally Converted Graphene Sheets. Chem. Mater. 2009, 21, 3045–3047.CrossRefGoogle Scholar
  81. 81.
    Sun, Z.; Kohama, S.; Zhang, Z.; Lomeda, J. R.; Tour, J. M. Soluble Graphene Through Edge-Selective Functionalization. Nano Res. 2010, 3, 117–125.CrossRefGoogle Scholar
  82. 82.
    Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237.CrossRefGoogle Scholar
  83. 83.
    Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Takigawa, T.; Ishii, N.; Aida, T. Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science 2003, 300, 2072–2074.CrossRefGoogle Scholar
  84. 84.
    Price, B. K.; Hudson, J. L.; Tour, J. M. Green Chemical Functionalization of Single-Walled Carbon Nanotubes in Ionic Liquids. J. Am. Chem. Soc. 2005, 127, 14867–14870.CrossRefGoogle Scholar
  85. 85.
    Liu, N.; Luo1, F.; Wu, H.; Liu, Y.; Zhang, C.; Chen, J. One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite. Adv. Funct. Mater. 2008, 18, 1518–1525.CrossRefGoogle Scholar
  86. 86.
    Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal Unzipping of Carbon Nanotubes to Form Graphene Nanoribbons. Nature 2009, 458, 872–876.CrossRefGoogle Scholar
  87. 87.
    Wolfe, S.; Ingold, C. F.; Lemieux, R. U. Oxidation of olefins by potassium permanganate. Mechanism of a-ketol formation. J. Am. Chem. Soc. 1981, 103, 938–939.CrossRefGoogle Scholar
  88. 88.
    Banoo, F.; Stewart, R. Mechanisms of permanganate oxidation. IX. Permanganate oxidation of aromatic alcohols in acid solution. Can. J. Chem. 1969, 47, 3199–3205.CrossRefGoogle Scholar
  89. 89.
    Elías, A. L.; Botello-Méndez, A. R.; Meneses-Rodríguez, D.; González, V. J.; Ramírez-González, D.; Ci, L.; Muñoz-Sandoval, E.; Ajayan, P. M.; Terrones, H.; Terrones, M. Longitudinal Cutting of Pure and Doped Carbon Nanotubes to Form Graphitic Nanoribbons Using Metal Clusters as Nanoscalpels. Nano Lett. 2010, 10, 366–372.CrossRefGoogle Scholar
  90. 90.
    Rangel, N. L.; Sotelo, J. C.; Seminario, J. M. Mechanism of Carbon Nanotubes Unzipping into Graphene Ribbons. J. Chem. Phys. 2009, 131, 031105.CrossRefGoogle Scholar
  91. 91.
    Sinitskii, A.; Dimiev, A.; Kosynkin, D. V.; Tour, J. Graphene Nanoribbon Devices Produced by Oxidative Unzipping of Carbon Nanotubes. ACS Nano 2010, 4 5405–5413.CrossRefGoogle Scholar
  92. 92.
    Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Szeri, A.; Dékány, I. Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids. Langmuir 2003, 19, 6050–6055.CrossRefGoogle Scholar
  93. 93.
    Sinitskii, A.; Fursina, A. A.; Kosynkin, D. V.; Higginbotham, A. L.; Natelson, D.; Tour, J. M. Electronic Transport in Monolayer Graphene Nanoribbons Produced by Chemical Unzipping of Carbon Nanotubes. Appl. Phys. Lett. 2009, 95, 253108.CrossRefGoogle Scholar
  94. 94.
    Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. Kinetics of Diazonium Functionalization of Chemically Converted Graphene Nanoribbons. ACS Nano 2010, 4, 1949–1954.CrossRefGoogle Scholar
  95. 95.
    Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour. J. M. Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano 2010, 4, 2059–2069.CrossRefGoogle Scholar
  96. 96.
    Cano-Márquez, A. G.; Rodríguez-Macías, F. J.; Campos-Delgado, J.; Espinosa-González, C. G.; Tristán-López, F.; Ramírez-González, D.; Cullen, D. A.; Smith, D. J.; Terrones, M.; Vega-Cantú, Y. I. Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes. Nano Lett., 2009, 9, 1527–1533.CrossRefGoogle Scholar
  97. 97.
    Jiao, L; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Narrow Graphene Nanoribbons from Carbon Nanotubes. Nature 2009, 458, 877–880.CrossRefGoogle Scholar
  98. 98.
    Jiao, L.; Wang, X.; Diankov, G.; Wang, H.; Dai, H. Facile Synthesis of High-Quality Graphene Nanoribbons. Nature Nanotech. 2010, 5, 321–325.CrossRefGoogle Scholar
  99. 99.
    Kosynkin, D. V.; Lu, W.; Sinitskii, A.; Pera, G.; Sun, Z.; Tour, J. M. Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using Potassium Vapor. ACS Nano, 2011, 5, 968–974.CrossRefGoogle Scholar
  100. 100.
    Rafiee, M. A.; Lu, W.; Thomas, A. V.; Zandiatashbar, A.; Rafiee, J.; Tour, J. M.; Koratkar, N. A. Graphene Nanoribbon Composites. ACS Nano, 2010, 4, 7415–7420.CrossRefGoogle Scholar
  101. 101.
    Zhu, Y.; Lu, W.; Sun, Z.; Kosynkin, D. V.; Yao, J. Tour, J. M. High Throughput Preparation of Large Area Transparent Electrodes Using Non-Functionalized Graphene Nanoribbons. Chem. Mater. 2011, 23, 935–939.CrossRefGoogle Scholar
  102. 102.
    Zeng, H.; Zhi, C.; Zhang, Z.; Wei, X.; Wang, X.; Guo, W.; Bando, Y.; Golberg, D. “White Graphenes”: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping. Nano Lett. 2010, 10, 5049–5055.CrossRefGoogle Scholar
  103. 103.
    Erickson, K. J.; Gibb, A. L.; Sinitskii, A.; Rousseas, M.; Alem, N.; Tour, J. M.; Zettl, A. K. Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons. Nano Lett. 2011, 11, 3221–3226.Google Scholar
  104. 104.
    Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 2009, 9, 30–35.CrossRefGoogle Scholar
  105. 105.
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706–710.CrossRefGoogle Scholar
  106. 106.
    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314.CrossRefGoogle Scholar
  107. 107.
    Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-Based Polymer Nanocomposites. Polymer 2011, 52, 5–25.CrossRefGoogle Scholar
  108. 108.
    Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502.CrossRefGoogle Scholar
  109. 109.
    Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863–4868.CrossRefGoogle Scholar
  110. 110.
    Kim, T. Y.; Lee, H. W.; Stoller, M.; Dreyer, D. R.; Bielawski, C.; Ruoff, R. S.; Suh, K. S. High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes. ACS Nano 2010, 5, 436–442.CrossRefGoogle Scholar
  111. 111.
    Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. ACS Nano 2010, 4, 2822–2830.CrossRefGoogle Scholar
  112. 112.
    Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano 2010, 4, 1963–1970.CrossRefGoogle Scholar
  113. 113.
    Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R.; Ajayan, P. M. Ultrathin Planar Graphene Supercapacitors. Nano Lett. 2011, 11, 1423–1427.CrossRefGoogle Scholar
  114. 114.
    Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; Su, D.; Stach, E. A.; Ruoff, R. S. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541.CrossRefGoogle Scholar
  115. 115.
    Segal, M. Selling Graphene by the Ton. Nature Nanotech. 2009, 4, 612–614.CrossRefGoogle Scholar
  116. 116.
    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature 2007, 448, 457–460.CrossRefGoogle Scholar
  117. 117.
    Wang, X.; Zhi, L.; Müllen, K. Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Lett. 2008, 8, 323–327.CrossRefGoogle Scholar
  118. 118.
    Eda, G.; Lin, Y. Y.; Miller, S.; Chen, C. W.; Su, W. F.; Chhowalla, M. Transparent and Conducting Electrodes for Organic Electronics from Reduced Graphene Oxide. Appl. Phys. Lett. 2008, 92, 233305.CrossRefGoogle Scholar
  119. 119.
    Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic Solar Cells with Solution-Processed Graphene Transparent Electrodes. Appl. Phys. Lett. 2008, 92, 263302.CrossRefGoogle Scholar
  120. 120.
    Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 2009, 9, 1949–1955.CrossRefGoogle Scholar
  121. 121.
    Yin, Z.; Sun, S.; Salim, T.; Wu, S.; Huang, X.; He, Q.; Lam, Y. M.; Zhang, H. Organic Photovoltaic Devices Using Highly Flexible Reduced Graphene Oxide Films as Transparent Electrodes. ACS Nano 2010, 4, 5263–5268.CrossRefGoogle Scholar
  122. 122.
    Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced Graphene Oxide Molecular Sensors. Nano Lett. 2008, 8, 3137–3140.CrossRefGoogle Scholar
  123. 123.
    Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano 2009, 3 301–306.CrossRefGoogle Scholar
  124. 124.
    Lu, G.; Ocola, L. E.; Chen, J. Gas Detection Using Low-Temperature Reduced Graphene Oxide Sheets. Appl. Phys. Lett. 2009, 94, 083111.CrossRefGoogle Scholar
  125. 125.
    Lu, G.; Park, S.; Yu, K.; Ruoff, R. S.; Ocola, L. E.; Rosenmann, D.; Chen, J. Toward Practical Gas Sensing with Highly Reduced Graphene Oxide: A New Signal Processing Method To Circumvent Run-to-Run and Device-to-Device Variations. ACS Nano 2011, 5, 1154–1164.CrossRefGoogle Scholar
  126. 126.
    Sudibya, H. G.; He, Q.; Zhang, H.; Chen, P. Electrical Detection of Metal Ions Using Field-Effect Transistors Based on Micropatterned Reduced Graphene Oxide Films. ACS Nano 2011, 5, 1990–1994.CrossRefGoogle Scholar
  127. 127.
    Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.CrossRefGoogle Scholar
  128. 128.
    Wilson, N. R.; Pandey, P. A.; Beanland, R.; Young, R. J.; Kinloch, I. A.; Gong, L.; Liu, Z.; Suenaga, K.; Rourke, J. P.; York, S. J.; Sloan, J. Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano, 2009, 3, 2547–2556.CrossRefGoogle Scholar
  129. 129.
    Higginbotham, A. L.; Lomeda, J. R.; Morgan, A. B.; Tour, J. M. Graphite Oxide Flame-Retardant Polymer Nanocomposites. App. Mater. Interfac. 2009, 1, 2256–2261.CrossRefGoogle Scholar
  130. 130.
    Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568–571.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC  2012

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Nebraska – LincolnLincolnUSA
  2. 2.Department of ChemistryRice UniversityHoustonUSA

Personalised recommendations