The Nucleolus pp 361-380 | Cite as

Relationship of the Cajal Body to the Nucleolus

Part of the Protein Reviews book series (PRON, volume 15)


Since its discovery over 100 years ago, the nucleoplasmic Cajal body (CB) has been linked to the nucleolus by both physical proximity and shared components. The CB contains factors necessary for small nuclear ribonucleoprotein (snRNP) and small nucleolar ribonucleoprotein (snoRNP) biogenesis. As snoRNPs are needed for ribosomal RNA processing, the CB can be considered to play a supportive role for nucleolar activity. Not all cell types contain CBs, but this structure is found in cells that are transcriptionally active, such as neuronal and cancer cells. Live-cell studies have shown that CBs can move to, associate with, and bud from nucleoli. Furthermore, CBs, or components therein, accumulate at the nucleolar surface or inside the nucleolus in response to various stresses, such as transcription inhibition, disruption of ribonucleoprotein (RNP) biogenesis, or DNA damage induced by neurodegeneration. Therefore, the CB and the nucleolus share a similar response to stress, and this arrangement may coordinate the level of ribosomal DNA transcription with the appropriate amount of snoRNP resources. These new findings demonstrate another facet of the functional relationship between the CB and the nucleolus.


Spinal Muscular Atrophy Cajal Body Nucleolar Localization Accessory Body Nucleolar Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Research in the Hebert lab is supported by NIH grant R01GM081448.


  1. Alsheich-Bartok O, Haupt S, Alkalay-Snir I, Saito S, Appella E, Haupt Y (2008) PML enhances the regulation of p53 by CK1 in response to DNA damage. Oncogene 27(26):3653–3661. doi: 1211036 [pii] 10.1038/sj.onc.1211036 PubMedGoogle Scholar
  2. Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE, Lamond AI, Mann M (2005) Nucleolar proteome dynamics. Nature 433(7021):77–83. doi: nature03207 [pii] 10.1038/nature03207 PubMedGoogle Scholar
  3. Andrade LEC, Chan EKL, Raska I, Peebles CL, Roos G, Tan EM (1991) Human autoantibody to a novel protein of the nuclear coiled body: immunological characterization and cDNA cloning of p80 coilin. J Exp Med 173:1407–1419PubMedGoogle Scholar
  4. Andrade LEC, Tan EM, Chan EKL (1993) Immunocytochemical analysis of the coiled body in the cell cycle and during cell proliferation. Proc Natl Acad Sci USA 90:1947–1951PubMedGoogle Scholar
  5. Baltanas FC, Casafont I, Weruaga E, Alonso JR, Berciano MT, Lafarga M (2010) Nucleolar disruption and Cajal body disassembly are nuclear hallmarks of DNA damage-induced neuro­degeneration in Purkinje cells. Brain Pathol (in press). doi: 10.1111/j.1750-3639.2010.00461.x
  6. Barcaroli D, Dinsdale D, Neale MH, Bongiorno-Borbone L, Ranalli M, Munarriz E, Sayan AE, McWilliam JM, Smith TM, Fava E, Knight RA, Melino G, De Laurenzi V (2006) FLASH is an essential component of Cajal bodies. Proc Natl Acad Sci USA 103(40):14802–14807. doi: 0604225103 [pii] 10.1073/pnas.0604225103 PubMedGoogle Scholar
  7. Bleichert F, Baserga SJ (2010) Dissecting the role of conserved box C/D sRNA sequences in di-sRNP assembly and function. Nucleic Acids Res 38(22):8295–8305. doi: gkq690 [pii] 10.1093/nar/gkq690 PubMedGoogle Scholar
  8. Bohmann K, Ferreira J, Lamond A (1995) Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and the nucleolus. J Cell Biol 131:817–831PubMedGoogle Scholar
  9. Bongiorno-Borbone L, De Cola A, Vernole P, Finos L, Barcaroli D, Knight RA, Melino G, De Laurenzi V (2008) FLASH and NPAT positive but not Coilin positive Cajal Bodies correlate with cell ploidy. Cell Cycle 7(15):2357–2367PubMedGoogle Scholar
  10. Bongiorno-Borbone L, De Cola A, Barcaroli D, Knight RA, Di Ilio C, Melino G, De Laurenzi V (2010) FLASH degradation in response to UV-C results in histone locus bodies disruption and cell-cycle arrest. Oncogene 29(6):802–810. doi: onc2009388 [pii] 10.1038/onc.2009.388 PubMedGoogle Scholar
  11. Boudonck K, Dolan L, Shaw PJ (1999) The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol Biol Cell 10(7):2297–2307PubMedGoogle Scholar
  12. Boulon S, Verheggen C, Jady BE, Girard C, Pescia C, Paul C, Ospina JK, Kiss T, Matera AG, Bordonne R, Bertrand E (2004) PHAX and CRM1 are required sequentially to transport U3 snoRNA to nucleoli. Mol Cell 16(5):777–787PubMedGoogle Scholar
  13. Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40(2):216–227. doi: S1097-2765(10)00752-5 [pii] 10.1016/j.molcel.2010.09.024 PubMedGoogle Scholar
  14. Callan HG, Gall JG, Murphy C (1991) Histone genes are located at the sphere loci of Xenopus lampbrush chromosomes. Chromosoma 101:245–251PubMedGoogle Scholar
  15. Carmo-Fonseca M, Tollervey D, Pepperkok R, Barabino SML, Merdes A, Brunner C, Zamore PD, Green MR, Hurt E, Lamond AI (1991) Mammalian nuclei contain foci which are highly enriched in components of the pre-mRNA splicing machinery. EMBO J 10:195–206PubMedGoogle Scholar
  16. Carmo-Fonseca M, Pepperkok R, Carvalho MT, Lamond AI (1992) Transcription-dependent colocalization of the U1, U2, U4/U6 and U5 snRNPs in coiled bodies. J Cell Biol 117:1–14PubMedGoogle Scholar
  17. Carvalho T, Almeida F, Calapez A, Lafarga M, Berciano MT, Carmo-Fonseca M (1999) The spinal muscular atrophy disease gene product, SMN: a link between snRNP biogenesis and the Cajal (coiled) body. J Cell Biol 147(4):715–728PubMedGoogle Scholar
  18. Cajal S.R.y (1910) El núcleo de las células piramidales del cerebro humano y de algunos mamí­feros. Trab Lab Invest Biol 8:27–62PubMedGoogle Scholar
  19. Chan EK, Takano S, Andrade LE, Hamel JC, Matera AG (1994) Structure, expression and chromosomal localization of human p80-coilin gene. Nucleic Acids Res 22(21):4462–4469PubMedGoogle Scholar
  20. Charroux B, Pellizzoni L, Perkinson RA, Yong J, Shevchenko A, Mann M, Dreyfuss G (2000) Gemin4. A novel component of the SMN complex that is found in both gems and nucleoli. J Cell Biol 148(6):1177–1186PubMedGoogle Scholar
  21. Chen HK, Pai CY, Huang JY, Yeh NH (1999) Human Nopp 140, which interacts with RNA polymerase I: implications for rRNA gene transcription and nucleolar structural organization. Mol Cell Biol 19(12):8536–8546PubMedGoogle Scholar
  22. Cioce M, Lamond AI (2005) Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131. doi: 10.1146/annurev.cellbio.20.010403.103738 PubMedGoogle Scholar
  23. Cioce M, Boulon S, Matera AG, Lamond AI (2006) UV-induced fragmentation of Cajal bodies. J Cell Biol 175(3):401–413. doi: jcb.200604099 [pii] 10.1083/jcb.200604099 PubMedGoogle Scholar
  24. Clelland AK, Kinnear NP, Oram L, Burza J, Sleeman JE (2009) The SMN protein is a key regulator of nuclear architecture in differentiating neuroblastoma cells. Traffic 10(11):1585–1598. doi: TRA972 [pii] 10.1111/j.1600-0854.2009.00972.x PubMedGoogle Scholar
  25. Dundr M, Misteli T (2010) Biogenesis of nuclear bodies. Cold Spring Harb Perspect Biol 2(12):a000711. doi: cshperspect.a000711 [pii] 10.1101/cshperspect.a000711 PubMedGoogle Scholar
  26. Dundr M, Hebert MD, Karpova TS, Stanek D, Xu H, Shpargel KB, Meier UT, Neugebauer KM, Matera AG, Misteli T (2004) In vivo kinetics of Cajal body components. J Cell Biol 164(6):831–842PubMedGoogle Scholar
  27. Dundr M, Ospina JK, Sung MH, John S, Upender M, Ried T, Hager GL, Matera AG (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 179(6):1095–1103. doi: jcb.200710058 [pii] 10.1083/jcb.200710058 PubMedGoogle Scholar
  28. Fakan S, Leser G, Martin TE (1984) Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J Cell Biol 98:358–363PubMedGoogle Scholar
  29. Feng W, Gubitz AK, Wan L, Battle DJ, Dostie J, Golembe TJ, Dreyfuss G (2005) Gemins modulate the expression and activity of the SMN complex. Hum Mol Genet 14(12):1605–1611PubMedGoogle Scholar
  30. Frey MR, Matera AG (1995) Coiled bodies contain U7 small nuclear RNA and associate with specific DNA sequences in interphase cells. Proc Natl Acad Sci USA 92:5915–5919PubMedGoogle Scholar
  31. Gabellini D, D’Antona G, Moggio M, Prelle A, Zecca C, Adami R, Angeletti B, Ciscato P, Pellegrino MA, Bottinelli R, Green MR, Tupler R (2006) Facioscapulohumeral muscular dystrophy in mice overexpressing FRG1. Nature 439(7079):973–977. doi: nature04422 [pii] 10.1038/nature04422 PubMedGoogle Scholar
  32. Gall JG (2003) The centennial of the Cajal body. Nat Rev Mol Cell Biol 4(12):975–980PubMedGoogle Scholar
  33. Gall JG, Callan HG (1989) The sphere organelle contains small nuclear ribonucleoproteins. Proc Natl Acad Sci USA 86:6635–6639PubMedGoogle Scholar
  34. Gall JG, Stephenson EC, Erba HP, Diaz MO, Barsacchi-Pilone G (1981) Histone genes are located at the sphere loci of newt lampbrush chromosomes. Chromosoma 84:159–171PubMedGoogle Scholar
  35. Gall JG, Bellini M, Wu Z, Murphy C (1999) Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. Mol Biol Cell 10(12):4385–4402PubMedGoogle Scholar
  36. Gao L, Frey MR, Matera AG (1997) Human genes encoding U3 snRNA associate with coiled bodies in interphase cells and are clustered on chromosome 17p11.2 in a complex inverted repeat structure. Nucleic Acids Res 25(23):4740–4747PubMedGoogle Scholar
  37. Garcia-Lopez P, Garcia-Marin V, Freire M (2010) The histological slides and drawings of Cajal. Front Neuroanat 4:9. doi: 10.3389/neuro.05.009.2010 PubMedGoogle Scholar
  38. Gautier T, Berges T, Tollervey D, Hurt E (1997) Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol Cell Biol 17(12):7088–7098PubMedGoogle Scholar
  39. Girard C, Neel H, Bertrand E, Bordonne R (2006) Depletion of SMN by RNA interference in HeLa cells induces defects in Cajal body formation. Nucleic Acids Res 34(10):2925–2932PubMedGoogle Scholar
  40. Gonsalvez GB, Tian L, Ospina JK, Boisvert FM, Lamond AI, Matera AG (2007) Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins. J Cell Biol 178(5):733–740. doi: jcb.200702147 [pii] 10.1083/jcb.200702147 PubMedGoogle Scholar
  41. Grande MA, van der Kraan I, van Steensel B, Schul W, de The H, van der Voort HT, de Jong L, van Driel R (1996) PML-containing nuclear bodies: their spatial distribution in relation to other nuclear components. J Cell Biochem 63(3):280–291PubMedGoogle Scholar
  42. Greco A (2009) Involvement of the nucleolus in replication of human viruses. Rev Med Virol 19(4):201–214. doi: 10.1002/rmv.614 PubMedGoogle Scholar
  43. Hardin JH, Spicer SS, Greene WB (1969) The paranucleolar structure, accessory body of Cajal, sex chromatin and related structures in nuclei of rat trigeminal neurons: a cytochemical and ultrastructural study. Anat Rec 164(4):403–431PubMedGoogle Scholar
  44. Hearst SM, Gilder AS, Negi SS, Davis MD, George EM, Whittom AA, Toyota CG, Husedzinovic A, Gruss OJ, Hebert MD (2009) Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines. J Cell Sci 122(Pt 11):1872–1881. doi: jcs.044040 [pii] 10.1242/jcs.044040 PubMedGoogle Scholar
  45. Hebert MD (2010) Phosphorylation and the Cajal body: modification in search of function. Arch Biochem Biophys 496(2):69–76. doi: S0003-9861(10)00075-5 [pii] 10.1016/ PubMedGoogle Scholar
  46. Hebert MD, Matera AG (2000) Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell 11(12):4159–4171PubMedGoogle Scholar
  47. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ, Poustka A, Dokal I (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19:32–38PubMedGoogle Scholar
  48. Henras A, Henry Y, Bousquet-Antonelli C, Noaillac-Depeyre J, Gelugne JP, Caizergues-Ferrer M (1998) Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs. EMBO J 17(23):7078–7090. doi: 10.1093/emboj/17.23.7078 PubMedGoogle Scholar
  49. Hiscox JA (2007) RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 5(2):119–127. doi: nrmicro1597 [pii] 10.1038/nrmicro1597 PubMedGoogle Scholar
  50. Huang S, Spector DL (1992) U1 and U2 small nuclear RNAs are present in nuclear speckles. Proc Natl Acad Sci USA 89:305–308PubMedGoogle Scholar
  51. Isaac C, Yang Y, Meier UT (1998) Nopp 140 functions as a molecular link between the nucleolus and the coiled bodies. J Cell Biol 142:407–417Google Scholar
  52. Jacobs EY, Frey MR, Wu W, Ingledue TC, Gebuhr TC, Gao L, Marzluff WF, Matera AG (1999) Coiled bodies preferentially associate with U4, U11, and U12 small nuclear RNA genes in interphase HeLa cells but not with U6 and U7 genes. Mol Biol Cell 10(5):1653–1663PubMedGoogle Scholar
  53. Jady BE, Darzacq X, Tucker KE, Matera AG, Bertrand E, Kiss T (2003) Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J 22(8):1878–1888PubMedGoogle Scholar
  54. Jady BE, Richard P, Bertrand E, Kiss T (2006) Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol Biol Cell 17(2):944–954PubMedGoogle Scholar
  55. James NJ, Howell GJ, Walker JH, Blair GE (2010) The role of Cajal bodies in the expression of late phase adenovirus proteins. Virology 399(2):299–311. doi: S0042-6822(10)00030-9 [pii] 10.1016/j.virol.2010.01.013 PubMedGoogle Scholar
  56. Jones KW, Gorzynski K, Hales CM, Fischer U, Badbanchi F, Terns RM, Terns MP (2001) Direct interaction of the spinal muscular atrophy disease protein SMN with the small nucleolar RNA-associated protein fibrillarin. J Biol Chem 276(42):38645–38651. doi: 10.1074/jbc.M106161200 M106161200 [pii] PubMedGoogle Scholar
  57. Kaiser TE, Intine RV, Dundr M (2008) De novo formation of a subnuclear body. Science 322(5908):1713–1717. doi: 1165216 [pii] 10.1126/science.1165216 PubMedGoogle Scholar
  58. Kiriyama M, Kobayashi Y, Saito M, Ishikawa F, Yonehara S (2009) Interaction of FLASH with arsenite resistance protein 2 is involved in cell cycle progression at S phase. Mol Cell Biol 29(17):4729–4741. doi: MCB.00289-09 [pii] 10.1128/MCB.00289-09 PubMedGoogle Scholar
  59. Kotova E, Jarnik M, Tulin AV (2009) Poly (ADP-ribose) polymerase 1 is required for protein localization to Cajal body. PLoS Genet 5(2):e1000387. doi: 10.1371/journal.pgen.1000387 PubMedGoogle Scholar
  60. Lafarga M, Hervas JP (1983) Light and electron microscopic characterization of the “Accessory Body” of Cajal in the neuronal nucleus. In: Grisolía S, Guerri C, Samson F, Norton S, Reinsoso-Suárez E (eds) Ramón y Cajal’s contribution to the neurosciences. Elsevier, Amsterdam, pp 91–100Google Scholar
  61. Lafarga M, Casafont I, Bengoechea R, Tapia O, Berciano MT (2009) Cajal’s contribution to the knowledge of the neuronal cell nucleus. Chromosoma 118(4):437–443. doi: 10.1007/s00412-009-0212-x PubMedGoogle Scholar
  62. Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, Bordonne R, Luhrmann R (2006) Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell 17(7):3221–3231. doi: E06-03-0247 [pii] 10.1091/mbc.E06-03-0247 PubMedGoogle Scholar
  63. Lyman SK, Gerace L, Baserga SJ (1999) Human Nop5/Nop58 is a component common to the box C/D small nucleolar ribonucleoproteins. RNA 5(12):1597–1604PubMedGoogle Scholar
  64. Lyon CE, Bohmann K, Sleeman J, Lamond AI (1997) Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. Exp Cell Res 230:84–93PubMedGoogle Scholar
  65. Mahmoudi S, Henriksson S, Corcoran M, Mendez-Vidal C, Wiman KG, Farnebo M (2009) Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 33(4):462–471. doi: S1097-2765(09)00073-2 [pii] 10.1016/j.molcel.2009.01.028 PubMedGoogle Scholar
  66. Mahmoudi S, Henriksson S, Weibrecht I, Smith S, Soderberg O, Stromblad S, Wiman KG, Farnebo M (2010) WRAP53 is essential for Cajal body formation and for targeting the survival of motor neuron complex to Cajal bodies. PLoS Biol 8(11):e1000521. doi: 10.1371/journal.pbio.1000521 PubMedGoogle Scholar
  67. Malatesta M, Zancanaro C, Martin T, Chan E, Amalric FL, Vogel P, Fakan S (1994) Is the coiled body involved in nucleolar functions? Exp Cell Res 211:415–419PubMedGoogle Scholar
  68. Matera AG, Ward DC (1993) Nucleoplasmic organization of small nuclear ribonucleoproteins in cultured human cells. J Cell Biol 121(4):715–727PubMedGoogle Scholar
  69. Matera AG, Izaguire-Sierra M, Praveen K, Rajendra TK (2009) Nuclear bodies: random aggregates of sticky proteins or crucibles of macromolecular assembly? Dev Cell 17(5):639–647. doi: S1534-5807(09)00439-0 [pii] 10.1016/j.devcel.2009.10.017 PubMedGoogle Scholar
  70. Matunis MJ, Wu J, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex. J Cell Biol 140(3): 499–509PubMedGoogle Scholar
  71. Meier UT, Blobel G (1994) NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria. J Cell Biol 127:1505–1514PubMedGoogle Scholar
  72. Monneron A, Bernhard W (1969) Fine structural organization of the interphase nucleus in some mammalian cells. J Ultrastruct Res 27:266–288PubMedGoogle Scholar
  73. Morency E, Sabra M, Catez F, Texier P, Lomonte P (2007) A novel cell response triggered by interphase centromere structural instability. J Cell Biol 177(5):757–768PubMedGoogle Scholar
  74. Morris GE (2008) The Cajal body. Biochim Biophys Acta 1783(11):2108–2115. doi: S0167-4889(08)00267-X [pii] 10.1016/j.bbamcr.2008.07.016 PubMedGoogle Scholar
  75. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 16(6):720–728. doi: 10.1101/gad.974702 PubMedGoogle Scholar
  76. New JH, Sugiyama T, Zaitseva E, Kowalczykowski SC (1998) Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391(6665):407–410. doi: 10.1038/34950 PubMedGoogle Scholar
  77. Nizami Z, Deryusheva S, Gall JG (2010) The Cajal body and histone locus body. Cold Spring Harb Perspect Biol 2(7):a000653. doi: cshperspect.a000653 [pii] 10.1101/cshperspect.a000653 PubMedGoogle Scholar
  78. Nugent CI, Lundblad V (1998) The telomerase reverse transcriptase: components and regulation. Genes Dev 12(8):1073–1085PubMedGoogle Scholar
  79. Ochs R, Stein TJ, Tan E (1994) Coiled bodies in the nucleolus of breast cancer cells. J Cell Sci 107:385–399PubMedGoogle Scholar
  80. Pederson T (2010) The nucleolus. Cold Spring Harb Perspect Biol. doi:cshperspect.a000638[pii]10.1101/cshperspect.a000638
  81. Pellizzoni L, Baccon J, Charroux B, Dreyfuss G (2001a) The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr Biol 11(14):1079–1088. doi: S0960-9822(01)00316-5 [pii] PubMedGoogle Scholar
  82. Pellizzoni L, Charroux B, Rappsilber J, Mann M, Dreyfuss G (2001b) A functional interaction between the survival motor neuron complex and RNA polymerase II. J Cell Biol 152(1):75–85PubMedGoogle Scholar
  83. Platani M, Goldberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151(7):1561–1574PubMedGoogle Scholar
  84. Platani M, Goldberg I, Lamond AI, Swedlow JR (2002) Cajal body dynamics and association with chromatin are ATP-dependent. Nat Cell Biol 4(7):502–508PubMedGoogle Scholar
  85. Pochukalina GN, Parfenov VN (2006) The nucleolus in oocytes of multilayer mouse follicles: topography of fibrillarin, RNA polymerase I and coilin. Tsitologiia 48(8):641–652PubMedGoogle Scholar
  86. Pochukalina GN, Parfenov VN (2008) Nucleolus transformation in oocytes of mouse antral follicles. Revealing of coilin and RNA polymerase I complex components. Tsitologiia 50(8):671–680PubMedGoogle Scholar
  87. Polak PE, Simone F, Kaberlein JJ, Luo RT, Thirman MJ (2003) ELL and EAF1 are Cajal body components that are disrupted in MLL-ELL leukemia. Mol Biol Cell 14(4):1517–1528PubMedGoogle Scholar
  88. Ramón y Cajal SR (1903) Un sencillo metodo de coloracion selectiva del reticulo protoplasmico y sus efectos en los diversos organos nerviosos de vertebrados y invertebrados. Trab Lab Invest Biol (Madrid) 2:129–221Google Scholar
  89. Raska I, Ochs RL, Andrade LEC, Chan EKL, Burlingame R, Peebles C, Gruol D, Tan EM (1990) Association between the nucleolus and the coiled body. J Struct Biol 104:120–127PubMedGoogle Scholar
  90. Raska I, Andrade LEC, Ochs RL, Chan EKL, Chang C-M, Roos G, Tan EM (1991) Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. Exp Cell Res 195:27–37PubMedGoogle Scholar
  91. Rebelo L, Almeida F, Ramos C, Bohmann K, Lamond AI, Carmo-Fonseca M (1996) The dynamics of coiled bodies in the nucleus of adenovirus-infected cells. Mol Biol Cell 7(7):1137–1151PubMedGoogle Scholar
  92. Renvoise B, Colasse S, Burlet P, Viollet L, Meier UT, Lefebvre S (2009) The loss of the snoRNP chaperone Nopp 140 from Cajal bodies of patient fibroblasts correlates with the severity of spinal muscular atrophy. Hum Mol Genet 18(7):1181–1189. doi: ddp009 [pii] 10.1093/hmg/ddp009 PubMedGoogle Scholar
  93. Scott MS, Boisvert FM, McDowall MD, Lamond AI, Barton GJ (2010) Characterization and ­prediction of protein nucleolar localization sequences. Nucleic Acids Res 38(21):7388–7399. doi: gkq653 [pii] 10.1093/nar/gkq653 PubMedGoogle Scholar
  94. Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16(5):2395–2413. doi: E04-11-0992 [pii] 10.1091/mbc.E04-11-0992 PubMedGoogle Scholar
  95. Shopland LS, Byron M, Stein JL, Lian JB, Stein GS, Lawrence JB (2001) Replication-dependent histone gene expression is related to Cajal body (CB) association but does not require sustained CB contact. Mol Biol Cell 12(3):565–576PubMedGoogle Scholar
  96. Shpargel KB, Matera AG (2005) Gemin proteins are required for efficient assembly of Sm-class ribonucleoproteins. Proc Natl Acad Sci USA 102(48):17372–17377. doi: 0508947102 [pii] 10.1073/pnas.0508947102 PubMedGoogle Scholar
  97. Shpargel KB, Ospina JK, Tucker KE, Matera AG, Hebert MD (2003) Control of Cajal body number is mediated by the coilin C-terminus. J Cell Sci 116(Pt 2):303–312PubMedGoogle Scholar
  98. Smith K, Carter K, Johnson C, Lawrence J (1995) U2 and U1 snRNA gene loci associate with coiled bodies. J Cell Biochem 59:473–485PubMedGoogle Scholar
  99. Snaar S, Wiesmeijer K, Jochemsen AG, Tanke HJ, Dirks RW (2000) Mutational analysis of fibrillarin and its mobility in living human cells. J Cell Biol 151(3):653–662PubMedGoogle Scholar
  100. Snow BE, Erdmann N, Cruickshank J, Goldman H, Gill RM, Robinson MO, Harrington L (2003) Functional conservation of the telomerase protein Est1p in humans. Curr Biol 13(8):698–704. doi: S0960982203002100 [pii] PubMedGoogle Scholar
  101. Spector DL, Lark G, Huang S (1992) Differences in snRNP localization between transformed and nontransformed cells. Mol Biol Cell 3:555–569PubMedGoogle Scholar
  102. Spiliotis ET, Kinoshita M, Nelson WJ (2005) A mitotic septin scaffold required for Mammalian chromosome congression and segregation. Science 307(5716):1781–1785. doi: 307/5716/1781 [pii]10.1126/science.1106823 PubMedGoogle Scholar
  103. Sun J, Xu H, Subramony SH, Hebert MD (2005) Interactions between Coilin and PIASy partially link Cajal bodies to PML bodies. J Cell Sci 118(Pt 21):4995–5003PubMedGoogle Scholar
  104. Tapia O, Bengoechea R, Berciano MT, Lafarga M (2010) Nucleolar targeting of coilin is regulated by its hypomethylation state. Chromosoma. doi: 10.1007/s00412-010-0276-7
  105. Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72(3):443–457. doi: 0092-8674(93)90120-F [pii] PubMedGoogle Scholar
  106. Tomlinson RL, Ziegler TD, Supakorndej T, Terns RM, Terns MP (2006) Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 17(2):955–965PubMedGoogle Scholar
  107. Tucker KE, Berciano MT, Jacobs EY, LePage DF, Shpargel KB, Rossire JJ, Chan EK, Lafarga M, Conlon RA, Matera AG (2001) Residual Cajal bodies in coilin knockout mice fail to recruit Sm snRNPs and SMN, the spinal muscular atrophy gene product. J Cell Biol 154(2):293–307PubMedGoogle Scholar
  108. Tycowski KT, Shu MD, Kukoyi A, Steitz JA (2009) A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. Mol Cell 34(1):47–57. doi: S1097-2765(09)00136-1 [pii] 10.1016/j.molcel.2009.02.020 PubMedGoogle Scholar
  109. Van Dyck E, Stasiak AZ, Stasiak A, West SC (1999) Binding of double-strand breaks in DNA by human Rad52 protein. Nature 398(6729):728–731. doi: 10.1038/19560 PubMedGoogle Scholar
  110. van Koningsbruggen S, Dirks RW, Mommaas AM, Onderwater JJ, Deidda G, Padberg GW, Frants RR, van der Maarel SM (2004) FRG1P is localised in the nucleolus, Cajal bodies, and speckles. J Med Genet 41(4):e46PubMedGoogle Scholar
  111. Velma V, Carrero ZI, Cosman AM, Hebert MD (2010) Coilin interacts with Ku proteins and inhibits in vitro non-homologous DNA end joining. FEBS Lett 584(23):4735–4739. doi: S0014-5793(10)00898-7 [pii] 10.1016/j.febslet.2010.11.004 PubMedGoogle Scholar
  112. Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, Terns MP, Artandi SE (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323(5914):644–648. doi: 323/5914/644 [pii]10.1126/science. 1165357 PubMedGoogle Scholar
  113. Verheggen C, Mouaikel J, Thiry M, Blanchard JM, Tollervey D, Bordonne R, Lafontaine DL, Bertrand E (2001) Box C/D small nucleolar RNA trafficking involves small nucleolar RNP proteins, nucleolar factors and a novel nuclear domain. EMBO J 20(19):5480–5490. doi: 10.1093/emboj/20.19.5480 PubMedGoogle Scholar
  114. Verheggen C, Lafontaine DL, Samarsky D, Mouaikel J, Blanchard JM, Bordonne R, Bertrand E (2002) Mammalian and yeast U3 snoRNPs are matured in specific and related nuclear compartments. EMBO J 21(11):2736–2745PubMedGoogle Scholar
  115. Vulliamy T, Beswick R, Kirwan M, Marrone A, Digweed M, Walne A, Dokal I (2008) Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA 105(23):8073–8078. doi: 0800042105 [pii] 10.1073/pnas.0800042105 PubMedGoogle Scholar
  116. Wang C, Meier UT (2004) Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 23(8):1857–1867. doi: 10.1038/sj.emboj.7600181 7600181 [pii] PubMedGoogle Scholar
  117. Watkins NJ, Gottschalk A, Neubauer G, Kastner B, Fabrizio P, Mann M, Luhrmann R (1998) Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. RNA 4(12):1549–1568PubMedGoogle Scholar
  118. Wu C-HH, Gall JG (1993) U7 small nuclear RNA in C snurposomes of the Xenopus germinal vesicle. Proc Natl Acad Sci USA 90:6257–6259PubMedGoogle Scholar
  119. Wu Z, Murphy C, Callan HG, Gall JG (1991) Small nuclear ribonucleoproteins and heterogeneous nuclear ribonucleoproteins in the amphibian germinal vesicle: loops, spheres and snurposomes. J Cell Biol 113:465–483PubMedGoogle Scholar
  120. Wu C, Murphy C, Gall J (1996) The Sm binding site targets U7 snRNA to coiled bodies (spheres) of amphibian oocytes. RNA 2:811–823PubMedGoogle Scholar
  121. Yang Y, Isaac C, Wang C, Dragon F, Pogacic V, Meier UT (2000) Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp 140. Mol Biol Cell 11(2):567–577PubMedGoogle Scholar
  122. Young PJ, Le TT, Dunckley M, Nguyen TM, Burghes AH, Morris GE (2001) Nuclear gems and Cajal (coiled) bodies in fetal tissues: nucleolar distribution of the spinal muscular atrophy protein, SMN. Exp Cell Res 265(2):252–261PubMedGoogle Scholar
  123. Young PJ, Day PM, Zhou J, Androphy EJ, Morris GE, Lorson CL (2002) A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J Biol Chem 277(4):2852–2859PubMedGoogle Scholar
  124. Zatsepina O, Baly C, Chebrout M, Debey P (2003) The step-wise assembly of a functional nucleolus in preimplantation mouse embryos involves the cajal (coiled) body. Dev Biol 253(1):66–83. doi: S0012160602908651 [pii] PubMedGoogle Scholar
  125. Zhai W, Comai L (2000) Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 20(16):5930–5938PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiochemistryThe University of Mississippi Medical CenterJacksonUSA

Personalised recommendations