Parameter Tuning of a Fractional-Order PI Controller Using the ITAE Criteria

Chapter

Abstract

This paper presents a new strategy for tuning fractional PI controllers. The method consist of using the diffusive representation to carry out the fractional order system and in minimizing the integral time absolute error (ITAE) performance index criterion. The fractional controller parameters are reached by using conventional optimization algorithm. An illustrative example is presented to demonstrate the effectiveness of the proposed method. Step responses of the controlled system obtained with fractional PI controller is more robust to gain variations than those obtained with traditional PI controller.

References

  1. 1.
    Aström K, Hägglund T (1995) PID controllers: Theory, design, and tuning. Instrument Society of America, North CarolinaGoogle Scholar
  2. 2.
    Cao J, Cao BG (2006) Design of fractional order controller based on particle swarm optimisation. Int J Contr Autom Syst 4:775–781Google Scholar
  3. 3.
    Dorcak L, Petras I, Kostial I, Terpak J (2001) State-space controller desing for the fractional-order regulated system. International carpathian control conference, Krynica, PolandGoogle Scholar
  4. 4.
    Leu JF, Tsay SY, Hwang C (2002) Design of optimal fractional-order PID controllers. J Chin Inst Chem Eng 33:193–202Google Scholar
  5. 5.
    Miler S (1993) Introduction to the fractional calculus and fractional differential equations. Wiley, NewYorkGoogle Scholar
  6. 6.
    Monje CA, Calderón AJ, Vinagre BM et al (2004) On fractional PIλ controllers: Some tuning rules for robustness to plant uncertainties. Nonlinear Dynam 8:369–381CrossRefGoogle Scholar
  7. 7.
    Point T, Trigeassou JC (2002) A method for modelling and simulation of fractional systems. Signal Process 83:2319–2333CrossRefGoogle Scholar
  8. 8.
    Montseny G (2004) Simple approach to approximation and dynamical realization of pseudodifferential time operators such as fractional ones. IEEE Trans Circ Syst II 51:613–618MathSciNetCrossRefGoogle Scholar
  9. 9.
    Natarj PSV, Tharewal S (2007) On fractional-order QFT controllers. J Dyn Syst Meas Contr 129:212–218CrossRefGoogle Scholar
  10. 10.
    Oldham K, Spanier J (1974) The fractional calculus: Theory and application of differentiation and integration to arbitrary order. Wiley, NewYorkGoogle Scholar
  11. 11.
    Podlubny I (1999) Fractional-order systems and PID-controllers. IEEE Trans Automat Contr 44:208–213MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Maiti D, Acharya AA, Chakraborty M, konar A, Janarthanan R (2008) Tuning PID and PIλDμ controller using the Integral Time Absolute Error criteria. International Conference on Information and Automation for Sustainability ICIAF8, Colombo, SrilankaGoogle Scholar
  13. 13.
    Laudebat L, Bidan P, Montseny G (2004) Modeling and optimal identification of pseudodifferential dynamics by means of diffusive representation-Part I: Modeling. IEEE Trans Circ Syst 51:1801–1813MathSciNetCrossRefGoogle Scholar
  14. 14.
    Oustaloup A, Levron F, Mathieu B, Nanot F (2000) Frequency-band complex non integer differentiator: Characterization and synthesis. IEEE Trans Circ and Syst I 47:25–39CrossRefGoogle Scholar
  15. 15.
    Tavazoei MS (2010) Notes on integral performance indices in fractional-order control systems. J Proc Contr 20:285–291CrossRefGoogle Scholar
  16. 16.
    Valério D, Sá da Costa J (2006) Tuning of fractional PID controllers with ziegler-nichols-type rules. Signal Process 86:2771–2784MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Département de Génie ElectriqueUniversité de SkikdaSkikdaAlgérie
  2. 2.Laboratoire d’Automatique et Informatique de Guelma (LAIG)Université de GuelmaGuelmaAlgèrie
  3. 3.LAIGUniversté de GuelmaGuelmaAlgèrie

Personalised recommendations