Utilization of Biogas as a Renewable Carbon Source: Dry Reforming of Methane

  • Christina Papadopoulou
  • Haris Matralis
  • Xenophon Verykios
Chapter

Abstract

Environmental concerns and sustainability issues demand the production of energy carriers from renewable resources using, if possible, technologies and infrastructure developed for fossil fuels. Biogas, a product of waste biomass anaerobic digestion, is a promising raw material for this purpose. As it consists mainly of CH4 and CO2, the most suitable process for its utilization is the dry reforming of methane (DRM) to synthesis gas and then to liquid energy carriers via the Fischer–Tropsch technology. This chapter reviews the chemistry of DRM and the catalytic systems developed for this process, with emphasis on the most important issue, namely, catalyst deactivation due to accumulation of carbonaceous deposits.

References

  1. 1.
    Capros P, Mantzos L, Papandreou V, Tasios N (2008) European energy and transport trends to 2030—update 2007. European Commission, Directorate-General for Energy and Transport.http://ec.europa.eu/dgs/energy_transport/figures/trends_2030_update_2007/energy_transport_trends_2030_update_2007_en.pdf. Accessed 9 Sept 2010
  2. 2.
    European Commission, Eurostat (2010) Energy, yearly statistics 2008. http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-PC-10-001/EN/KS-PC-10-001-EN.PDF. Accessed 9 Sept 2010
  3. 3.
    European Parliament and Council (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union L 140/16. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF. Accessed 9 Sept 2010
  4. 4.
    European Commission, Eurostat (2010) Energy, energy statistics and quantities, primary production of renewable energy. http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table&plugin=1&language=en&pcode=ten00081. Accessed 9 Jan 2011Google Scholar
  5. 5.
    Faaij A (2006) Modern biomass conversion technologies. Mitig Adapt Strateg Glob Change 11:343–375. doi:10.1007/s11027-005-9004-7 CrossRefGoogle Scholar
  6. 6.
    McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54. doi:10.1016/S0960-8524(01)00119-5 CrossRefGoogle Scholar
  7. 7.
    Yoshida Y, Dowaki K, Matsumura Y, Matsuhashid R, Li D, Ishitani H, Komiyama H (2003) Comprehensive comparison of efficiency and CO2 emissions between biomass energy conversion technologies—position of supercritical water gasification in biomass technologies. Biomass Bioenergy 25:257–272. doi:10.1016/S0961-9534(03)00016-3 CrossRefGoogle Scholar
  8. 8.
    Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89:S29–S35. doi:doi.org/10.1016/j.fuel.2010.07.015 CrossRefGoogle Scholar
  9. 9.
    Converti A, Oliveira RPS, Torres BR, Lodi A, Zilli M (2009) Biogas production and valorization by means of a two-step biological process. Bioresour Technol 100:5771–5776. doi:10.1016/j.biortech.2009.05.072 CrossRefGoogle Scholar
  10. 10.
    Seppala M, Paavola T, Lehtomaki A, Rintala J (2009) Biogas production from boreal herbaceous grasses—specific methane yield and methane yield per hectare. Bioresour Technol 100:2952–2958. doi:10.1016/j.biortech.2009.01.044 CrossRefGoogle Scholar
  11. 11.
    Ferreira-Aparicio P, Benito MJ, Sanz JL (2005) New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers. Catal Rev 47:491–588. doi:10.1080/01614940500364958 CrossRefGoogle Scholar
  12. 12.
    Martins das Neves LC, Converti A, Penna TCV (2009) Biogas production: new trends for alternative energy sources in rural and urban zones. Chem Eng Technol 32:1147–1153. doi:10.1002/ceat.200900051 CrossRefGoogle Scholar
  13. 13.
    Holm-Nielsen JB, Al Seadi D, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100:5478–5484. doi:10.1016/j.biortech.2008.12.046 CrossRefGoogle Scholar
  14. 14.
    Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380. doi:10.1016/j.energy.2006.10.018 CrossRefGoogle Scholar
  15. 15.
    Rasi S, Lehtinen J, Rintala J (2010) Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants. Renew Energy 35:2666–2673. doi:10.1016/j.renene.2010.04.012 CrossRefGoogle Scholar
  16. 16.
    Biogas Renewable Energy (2009) www.biogas-renewable-energy.info. Accessed 3 Aug 2010
  17. 17.
    Johnson E (2009) Goodbye to carbon neutral: getting biomass footprints right. Environ Impact Assess Rev 29:165–168. doi:10.1016/j.eiar.2008.11.002 CrossRefGoogle Scholar
  18. 18.
    Poschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energy 87:3305–3321. doi:10.1016/j.apenergy.2010.05.011 CrossRefGoogle Scholar
  19. 19.
    Prassl H (2008) Biogas purification and assessment of the natural gas grid in Southern and Eastern Europe. Ing. Gerhard Agrinz GmbH, Leibnitz. http://www.big-east.eu/bigeast_reports/WP%202_Task%202.5-Report.pdf. Accessed 12 Sept 2010
  20. 20.
    Li ZL, Devianto H, Kwon HH, Yoon SP, Lim TH, Lee HI (2010) The catalytic performance of Ni/MgSiO3 catalyst for methane steam reforming in operation of direct internal reforming MCFC. J Ind Eng Chem 16:485–489. doi:10.1016/j.jiec.2010.01.058 Google Scholar
  21. 21.
    Shiratori Y, Sasakia K (2008) NiO–ScSZ and Ni0.9Mg0.1O–ScSZ-based anodes under internal dry reforming of simulated biogas mixtures. J Power Sources 180:738–741. doi:10.1016/j.jpowsour.2008.03.001 CrossRefGoogle Scholar
  22. 22.
    Fan MS, Abdullah AZ, Bhatia S (2009) Catalytic technology for carbon dioxide reforming of methane to synthesis gas. ChemCatChem 1:192–208. doi:10.1002/cctc.200900025 CrossRefGoogle Scholar
  23. 23.
    Bell AT, Gates BC, Ray D (2007) Basic research needs: catalysis for energy. Report from the US Department of Energy, Office of Basic Energy Sciences Workshop August 6–8, 2007, Bethesda, MD. http://www.sc.doe.gov/bes/reports/files/CAT_rpt.pdf. Accessed 5 Aug 2010
  24. 24.
    Roloson BD, Scott NR, Bothi K, Saikkonen K, Zicari S (2006) Biogas processing—the New York State Energy Research and Development Authority, Agreement No: NYSERDA 7250, Albany, NYGoogle Scholar
  25. 25.
    Manna L, Zanetti MC, Genon G (1999) Modeling biogas production at landfill site. Resour Conserv Recycl 26:1–14. doi:10.1016/S0921-3449(98)00049-4 CrossRefGoogle Scholar
  26. 26.
    Bruijstens AJ, Beuman WPH, Molen Mvd, Rijke Jd, Cloudt RPM, Kadijk G, Camp Ood, Bleuanus S et al. (2008) Biogas composistion and engine performance, including database and biogas property model. Project supported by the European Commission under RTD contract: 019795. http://www.biogasmax.eu/media/r3_report_on_biogas_composition_and_engine_performance__092122100_1411_21072009.pdf. Accessed 6 Jan 2011
  27. 27.
    Petersson A, Wellinger A (2009) Biogas upgrading technologies–developments and innovations. Task 37 IEA Bioenergy. http://www.iea-biogas.net/Dokumente/upgrading_rz_low_final.pdf. Accessed 6 Sept 2010
  28. 28.
    Torres W, Pansare SS, Goodwin JG Jr (2007) Hot gas removal of tars, ammonia, and hydrogen sulfide from biomass gasification gas. Catal Rev 49:407–456. doi:10.1080/01614940701375134 CrossRefGoogle Scholar
  29. 29.
    Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes—a review. Can Biosyst Eng 48:2.1–2.14Google Scholar
  30. 30.
    Wakker JP, Gerritsen AW, Moulijn JA (1993) High temperature hydrogen sulfide and carbonyl sulfide removal with manganese oxide (MnO) and iron oxide (FeO) on gamma-alumina acceptors. Ind Eng Chem Res 32(1):139–149. doi:10.1021/ie00013a019 CrossRefGoogle Scholar
  31. 31.
    Ramírez-Saenz D, Zarate-Segura PB, Guerrero-Barajas C, García-Pena EI (2009) H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use. J Hazard Mater 163:1272–1281. doi:10.1016/j.jhazmat.2008.07.129 CrossRefGoogle Scholar
  32. 32.
    Sanchez JM, Ruiz E, Otero J (2005) Selective removal of hydrogen sulphide from gaseous streams using a zinc-based sorbent. Ind Eng Chem Res 44:241–249. doi:10.1021/ie0497902 CrossRefGoogle Scholar
  33. 33.
    Jung SY, Lee SJ, Lee TJ, Ryu CK, Kim JC (2006) H2S removal and regeneration properties of Zn-Al-based sorbents promoted with various promoters. Catal Today 111:217–222. doi:10.1016/j.cattod.2005.10.029 CrossRefGoogle Scholar
  34. 34.
    Park DW, Kim BG, Kim MI, Kim I, Woo HC (2004) Production of ammonium thiosulfate by the oxidation of hydrogen sulfide over Nb-Fe mixed oxide catalysts. Catal Today 93–95:235–240. doi:10.1016/j.cattod.2004.06.047 CrossRefGoogle Scholar
  35. 35.
    Shin MY, Park DW, Chung JS (2001) Development of vanadium-based mixed oxide catalysts for selective oxidation of H2S to sulphur. Appl Catal B Environ 30:409–419. doi:10.1016/S0926-3373(00)00262-9 CrossRefGoogle Scholar
  36. 36.
    Kim BG, Ju WD, Kim I, Woo HC, Park DW (2004) Performance of vanadium-molybdenum mixed oxide catalysts in selective oxidation of hydrogen sulfide containing excess water and ammonia. Solid State Ion 172:135–138. doi:10.1016/j.ssi.2004.02.043 CrossRefGoogle Scholar
  37. 37.
    Slimane RB, Abbasian J (2000) Copper-based sorbents for coal gas desulfurization at moderate temperatures. Ind Eng Chem Res 39:1338–1344. doi:10.1021/ie990877a CrossRefGoogle Scholar
  38. 38.
    Chung JB, Chung JS (2005) Desulfurization of H2S using cobalt-containing sorbents at low temperatures. Chem Eng Sci 60:1515–1523. doi:10.1016/j.ces.2004.11.002 CrossRefGoogle Scholar
  39. 39.
    Vamvuka D, Arvanitidis C, Zachariadis D (2004) Flue gas desulfurization at high temperatures. A review. Environ Eng Sci 21:525–548. doi:10.1089/1092875041358557 CrossRefGoogle Scholar
  40. 40.
    Bu X, Ying Y, Ji X, Zhang C, Peng W (2007) New development of zinc based sorbents for hot gas desulfurization. Fuel Process Technol 88:143–147. doi:10.1016/j.fuproc.2005.01.025 CrossRefGoogle Scholar
  41. 41.
    Truong LVA, Abatzoglou N (2005) A H2S reactive adsorption process for the purification of biogas prior to its use as a bioenergy vector. Biomass Bioenergy 29:142–151. doi:10.1016/j.biombioe.2005.03.001 CrossRefGoogle Scholar
  42. 42.
    Osorio F, Torres JC (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34:2164–2171. doi:10.1016/j.renene.2009.02.023 CrossRefGoogle Scholar
  43. 43.
    Pipatmanomai S, Kaewluan S, Vitidsant T (2009) Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm. Appl Energy 86:669–674. doi:10.1016/j.apenergy.2008.07.007 CrossRefGoogle Scholar
  44. 44.
    Alonso-Vicario A, Ochoa-Gomez JR, Gil-Río S, Gomez-Jiménez-Aberasturi O, Ramírez-Lopez CA, Torrecilla-Soria J, Domínguez A (2010) Purification and upgrading of biogas by pressure swing adsorption on synthetic and natural zeolites. Microporous Mesoporous Mater 134:100–107. doi:10.1016/j.micromeso.2010.05.014 CrossRefGoogle Scholar
  45. 45.
    Rostrup-Nielsen JR (1984) Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane. J Catal 85:31–43. doi:10.1016/0021-9517(84)90107-6 CrossRefGoogle Scholar
  46. 46.
    York APE, Xiao T, Creen MLH, Claridge JB (2007) Methane oxyforming for synthesis gas production. Catal Rev 49:511–560. doi:10.1080/0161494070158 CrossRefGoogle Scholar
  47. 47.
    Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4. Catal Rev Sci Eng 41:1–42. doi:10.1081/CR-100101948 CrossRefGoogle Scholar
  48. 48.
    McCrary JH, McCrary GE, Chubb TA, Nemecek JJ, Simmons DE (1982) An experimental study of the CO2–CH4 reforming-methanation cycle as a mechanism for converting and transporting solar energy. Sol Energy 29:141–151. doi:10.1016/0038-092X(82)90176-1 CrossRefGoogle Scholar
  49. 49.
    Verykios XE (2003) Catalytic dry reforming of natural gas for the production of chemicals and hydrogen. Int J Hydrogen Energy 28:1045–1063. doi:10.1016/S0360-3199(02)00215-X Google Scholar
  50. 50.
    Bradford MCJ, Vannice MA (1996) Catalytic reforming of methane with carbon dioxide over nickel catalysts. I. Catalyst characterization and activity. Appl Catal A Gen 142:73–96. doi:10.1016/0926-860X(96)00065-8 CrossRefGoogle Scholar
  51. 51.
    Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Catal Today 63:159–164. doi:10.1016/S0920-5861(00)00455-7 CrossRefGoogle Scholar
  52. 52.
    Dry ME (2004) Fischer-Tropsch technology. Stud Surf Sci Catal 152:196–257. doi:10.1016/S0167-2991(04)80460-9 CrossRefGoogle Scholar
  53. 53.
    Rostrup-Nielsen JR (1994) Catalysis and large-scale conversion of natural gas. Catal Today 21:257–267. doi:10.1016/0920-5861(94)80147-9 CrossRefGoogle Scholar
  54. 54.
    Rostrup-Nielsen JR (2002) Syngas in perspective. Catal Today 71:243–247. doi:10.1016/S0920-5861(01)00454-0 CrossRefGoogle Scholar
  55. 55.
    Hu YH, Ruckenstein E (2004) Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal 48:297–345. doi:10.1016/S0360-0564(04)48004-3 CrossRefGoogle Scholar
  56. 56.
    Pereniguez R, Gonzalez-DelaCruz VM, Holgado HP, Caballero A (2010) Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts. Appl Catal B Environ 93:346–353. doi:10.1016/j.apcatb.2009.09.040 CrossRefGoogle Scholar
  57. 57.
    Song C (2001) Tri-reforming: a new process for reducing CO2 emissions. Chem Innovat 31:21–26Google Scholar
  58. 58.
    Song C, Pan W (2004) Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catal Today 98:463–484. doi:10.1016/j.cattod.2004.09.054 CrossRefGoogle Scholar
  59. 59.
    Halmann M, Steinfeld A (2009) Hydrogen production and CO2 fixation by flue-gas treatment using methane tri-reforming or coke/coal gasification combined with lime carbonation. Int J Hydrogen Energy 34:8061–8066. doi:10.1016/j.ijhydene.2009.08.031 CrossRefGoogle Scholar
  60. 60.
    Hu YH, Ruckenstein E (2002) Binary MgO based solid solution catalysts for methane conversion to syngas. Catal Rev Sci Eng 44:423–453. doi:10.1081/CR-120005742 CrossRefGoogle Scholar
  61. 61.
    Zhang J, Wang H, Dalai AK (2007) Development of stable bimetallic catalysts for carbon dioxide reforming of methane. J Catal 249:300–310. doi:10.1016/j.jcat.2007.05.004 CrossRefGoogle Scholar
  62. 62.
    Gadalla AM, Bower B (1988) The role of catalyst support on the activity of nickel reforming methane with CO2. Chem Eng Sci 43:3049–3062. doi:10.1016/0009-2509(88)80058-7 CrossRefGoogle Scholar
  63. 63.
    Wang S, Lu G, Millar GJ (1996) Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art. Energy Fuel 10:896–904. doi:10.1021/ef950227t CrossRefGoogle Scholar
  64. 64.
    Li Y, Wang Y, Zhang X, Mi Z (2008) Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int J Hydrogen Energy 33:2507–2514. doi:10.1016/j.ijhydene.2008.02.051 CrossRefGoogle Scholar
  65. 65.
    Tsipouriari VA, Verykios XE (1999) Carbon and oxygen reaction pathways of CO2 reforming of methane over Ni/La2O3 and Ni/Al2O3 catalysts studied by isotopic tracing techniques. J Catal 187:85–94. doi:10.1006/jcat.1999.2565 CrossRefGoogle Scholar
  66. 66.
    Yamaguchi A, Iglesia E (2010) Catalytic activation and reforming of methane on supported palladium clusters. J Catal 274:52–63. doi:10.1016/j.jcat.2010.06.001 CrossRefGoogle Scholar
  67. 67.
    Nandini A, Pant KK, Dhingra SC (2006) Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst. Appl Catal A Gen 308:119–127. doi:10.1016/j.apcata.2006.04.014 CrossRefGoogle Scholar
  68. 68.
    Enger BC, Lodeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27. doi:10.1016/j.apcata.2008.05.018 CrossRefGoogle Scholar
  69. 69.
    Trevor DJ, Cox DM, Kaldor A (1990) Methane activation on unsupported platinum clusters. J Am Chem Soc 112:3742–3749. doi:10.1021/ja00166a005 CrossRefGoogle Scholar
  70. 70.
    Kuijpers EDM, Breedijk AK, Van der Wal WJJ, Geus JW (1983) Chemisorption of methane on Ni/Sio2. Catalysts and reactivity of the chemisorption products toward hydrogen. J Catal 81:429–439. doi:10.1016/0021-9517(83)90181-1 CrossRefGoogle Scholar
  71. 71.
    Bengaard HS, Nørskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) Steam reforming and graphite formation on Ni catalysts. J Catal 209:365–384. doi:10.1006/jcat.2002.3579 CrossRefGoogle Scholar
  72. 72.
    Abild-Pedersen F, Lytken O, Engbaek J, Nielsen G, Chorkendorff I, Norskov JK (2005) Methane activation on Ni(111): effects of poisons and step defects. Surf Sci 590:127–137. doi:10.1016/j.susc.2005.05.057 CrossRefGoogle Scholar
  73. 73.
    Haroun MF, Moussound PS, Legare P (2008) Theoretical study of methane adsorption on perfect and defective Ni(1 1 1) surfaces. Catal Today 138:77–83. doi:10.1016/j.cattod.2008.04.040 CrossRefGoogle Scholar
  74. 74.
    Ferreira-Aparicio P, Rodrıguez-Ramos I, Anderson JA, Guerrero-Ruiz A (2000) Mechanistic aspects of the dry reforming of methane over ruthenium catalysts. Appl Catal A Gen 202:183–196. doi:10.1016/S0926-860X(00)00525-1 CrossRefGoogle Scholar
  75. 75.
    Osaki T, Masuda H, Mori T (1994) Intermediate hydrocarbon species for the CO2–CH4 reaction on supported Ni catalysts. Catal Lett 29:33–37. doi:10.1007/BF00814249 CrossRefGoogle Scholar
  76. 76.
    Osaki T, Masuda H, Horiuchi T, Mori T (1995) Highly hydrogen-deficient hydrocarbon species for the CO2-reforming of CH4 on Co/A12O3 catalyst. Catal Lett 34:59–63. doi:10.1007/BF00808322 CrossRefGoogle Scholar
  77. 77.
    Pinna F (1998) Supported metal catalysts preparation. Catal Today 41:129–137. doi:10.1016/S0920-5861(98)00043-1 CrossRefGoogle Scholar
  78. 78.
    Imelik B, Vedrine JC (eds) (1994) Catalyst characterization, physical techniques for solid materials. Springer, New YorkGoogle Scholar
  79. 79.
    Tsipouriari VA, Verykios XE (2001) Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst. Catal Today 64:83–90. doi:10.1016/S0920-5861(00)00511-3 CrossRefGoogle Scholar
  80. 80.
    Topalidis A, Petrakis DE, Ladavos A, Loukatzikou L, Pomonis PJ (2007) A kinetic study of methane and carbon dioxide interconversion over 0.5%Pt/SrTiO3 catalysts. Catal Today 127:238–245. doi:10.1016/j.cattod.2007.04.01 CrossRefGoogle Scholar
  81. 81.
    Freund HJ, Messmer RP (1986) On the bonding and reactivity of CO2 on metal surfaces. Surf Sci 172:1–30. doi:10.1016/0039-6028(86)90580-7 CrossRefGoogle Scholar
  82. 82.
    Solymosi F (1991) The bonding, structure and reactions of CO2 adsorbed on clean and promoted metal surfaces. J Mol Catal 65:337–358. doi:10.1016/0304-5102(91)85070-I CrossRefGoogle Scholar
  83. 83.
    Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273. doi:10.1016/S0167-5729(96)00007-6 CrossRefGoogle Scholar
  84. 84.
    Erdőhelyi A, Cserenyi J, Papp E, Solymosi F (1994) Catalytic reaction of methane with carbon dioxide over supported palladium. Appl Catal A Gen 108:205–219. doi:10.1016/0926-860X(94)85071-2 CrossRefGoogle Scholar
  85. 85.
    Cimino A, Stone FS (2002) Oxide solid solutions as catalysts. Adv Catal 47:141–306. doi:10.1016/S0360-0564(02)47007-1 CrossRefGoogle Scholar
  86. 86.
    Burghaus U (2009) Surface science perspective of carbon dioxide chemistry—adsorption kinetics and dynamics of CO2 on selected model surfaces. Catal Today 148:212–220. doi:10.1016/j.cattod.2009.07.082 CrossRefGoogle Scholar
  87. 87.
    Pan YX, Liu CJ, Wiltowski TS, Ge Q (2009) CO2 adsorption and activation over γ-Al2O3-supported transition metal dimers: a density functional study. Catal Today 147:68–76. doi:10.1016/j.cattod.2009.05.005 CrossRefGoogle Scholar
  88. 88.
    Cheng ZX, Zhao XG, Li JL, Zhu QM (2001) Role of support in CO2 reforming of CH4 over a Ni/γ-Al2O3 catalyst. Appl Catal A Gen 205:31–36. doi:10.1016/S0926-860X(00)00560-3 CrossRefGoogle Scholar
  89. 89.
    De Leitenburg C, Trovarelli A, Kaspar J (1997) A temperature-programmed and transient kinetic study of CO2 activation and methanation over CeO2 supported noble metals. J Catal 166:98–107. doi:10.1006/jcat.1997.1498 CrossRefGoogle Scholar
  90. 90.
    Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE (2000) CO2 reforming of CH4 over Pt/ZrO2 catalysts promoted with La and Ce oxides. J Catal 194:240–249. doi:10.1006/jcat.2000.2939 CrossRefGoogle Scholar
  91. 91.
    Ozkara-Aydinoglu S, Ozensoy E, Aksoylu AE (2009) The effect of impregnation strategy on methane dry reforming activity of Ce promoted Pt/ZrO2. Int J Hydrogen Energy 34:9711–9722. doi:10.1016/j.ijhydene.2009.09.005 CrossRefGoogle Scholar
  92. 92.
    Akpan E, Yanping Suna Y, Kumar P, Ibrahim H, Aboudheir A, Idem R (2007) Kinetics, experimental and reactor modelling studies of the carbon dioxide reforming of methane (CDRM) over a new Ni/CeO2–ZrO2 catalyst in a packed bed tubular reactor. Chem Eng Sci 62:4012–4024. doi:10.1016/j.ces.2007.04.044 CrossRefGoogle Scholar
  93. 93.
    Wei J, Iglesia E (2004) Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium. J Catal 225:116–127. doi:10.1016/j.jcat.2003.09.030 CrossRefGoogle Scholar
  94. 94.
    Bradford MCJ, Vannice MA (1999) The role of metal-support interactions in CO2 reforming of CH4. Catal Today 50:87–96. doi:10.1016/S0920-5861(98)00465-9 CrossRefGoogle Scholar
  95. 95.
    Bradford MCJ, Vannice MA (1999) CO2 reforming of CH4 over supported Ru catalysts. J Catal 183:69–75. doi:10.1006/jcat.1999.2385 CrossRefGoogle Scholar
  96. 96.
    Osaki T., Mori T (2001) Role of potassium in carbon-free CO2 reforming of methane on K-promoted Ni/Al2O3 catalysts. J Catal 204:89–97. doi:10.1006/jcat.2001.3382 CrossRefGoogle Scholar
  97. 97.
    Portugal UL, Santos ACSF, Damyanova S, Marques CMP, Bueno JMC (2002) CO2 reforming of CH4 over Rh-containing catalysts. J Mol Catal A Chem 184:311–322. doi:10.1016/S1381-1169(02)00018-3 CrossRefGoogle Scholar
  98. 98.
    Gheno SM, Damyanova S, Riguetto BA, Marques CMP, Leite CAP, Bueno JMC (2003) CO2 reforming of CH4 over Ru/zeolite catalysts modified with Ti. J Mol Catal A Chem 198:263–275. doi:10.1016/S1381-1169(02)00695-7 CrossRefGoogle Scholar
  99. 99.
    Bitter JH, Seshan K, Lercher JA (1998) Mono and bifunctional pathways of CO2/CH4 reforming over Pt and Rh based catalysts. J Catal 176:93–101. doi:10.1006/jcat.1998.2022 CrossRefGoogle Scholar
  100. 100.
    Maestri M, Vlachos DG, Beretta A, Groppi G, Tronconi E (2008) Steam and dry reforming of methane on Rh: microkinetic analysis and hierarchy of kinetic models. J Catal 259:211–222. doi:10.1016/j.jcat.2008.08.008 CrossRefGoogle Scholar
  101. 101.
    Donazzi A, Beretta A, Groppi G, Forzatti P (2008) Catalytic partial oxidation of methane over a 4% Rh/α-Al2O3 catalyst part II: role of CO2 reforming. J Catal 255:259–268. doi:10.1016/j.jcat.2008.02.010 CrossRefGoogle Scholar
  102. 102.
    Wei J, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370–383. doi:10.1016/j.jcat.2004.02.032 CrossRefGoogle Scholar
  103. 103.
    Abild-Pedersen F, Norskov JK, RostrupNielsen JR, Sehested J, Helveg S (2006) Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations. Phys Rev B 73:115419-1–115419-13. doi:10.1103/PhysRevB.73.115419 CrossRefGoogle Scholar
  104. 104.
    Xu J, Saeys M (2006) Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron. J Catal 242:217–226. doi:10.1016/j.jcat.2006.05.029 CrossRefGoogle Scholar
  105. 105.
    Wolf EE, Alfani F (1982) Catalysts deactivation by coking. Catal Rev Sci Eng 24:329–371. doi:10.1080/03602458208079657 CrossRefGoogle Scholar
  106. 106.
    Trimm DL (1977) The formation and removal of coke from nickel catalyst. Catal Rev Sci Eng 16:155–189. doi:10.1080/03602457708079636 CrossRefGoogle Scholar
  107. 107.
    Armor JN, Martenak DJ (2001) Studying carbon formation at elevated pressure. Appl Catal A Gen 206:231–236. doi:10.1016/S0926-860X(00)00608-6 CrossRefGoogle Scholar
  108. 108.
    Coad JP, Riviere JC (1971) Auger spectroscopy of carbon on nickel. Surf Sci 25:609–624. doi:10.1016/0039-6028(71)90148-8 CrossRefGoogle Scholar
  109. 109.
    Koerts T, Van Santen RA (1991) A low temperature reaction sequence for methane conversion. J Chem Soc Chem Commun 1281–1283. doi:10.1039/C39910001281
  110. 110.
    Chen L, Lu Y, Hong Q, Lin J, Dautzenberg FM (2005) Catalytic partial oxidation of methane to syngas over Ca-decorated-Al2O3-supported Ni and NiB catalysts. Appl Catal A Gen 292:295–304. doi:10.1016/j.apcata.2005.06.010 CrossRefGoogle Scholar
  111. 111.
    Claridge JB, Green MLH, Tsang SC, York APE, Ashcroft AT, Battle PD (1993) A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas. Catal Lett 22:299–305. doi:10.1007/BF00807237 CrossRefGoogle Scholar
  112. 112.
    Shamsi A (2004) Carbon formation on Ni–MgO catalyst during reaction of methane in the presence of CO2 and CO. Appl Catal A Gen 277:23–30. doi:10.1016/j.apcata.2004.08.015 CrossRefGoogle Scholar
  113. 113.
    Figueiredo JL, Trimm DL (1975) Gasification of carbon deposits on nickel catalysts. J Catal 40:154–159. doi:10.1016/0021-9517(75)90241-9 CrossRefGoogle Scholar
  114. 114.
    Hao Z, Zhu Q, Lei Z, Li H (2008) CH4–CO2 reforming over Ni/Al2O3 aerogel catalysts in a fluidized bed reactor. Powder Technol 182:474–479. doi:10.1016/j.powtec.2007.05.024 CrossRefGoogle Scholar
  115. 115.
    Corthals S, Van Nederkassel J, Geboers J, De Winne H, Van Noyen J, Moens B, Sels B, Jacobs P (2008) Influence of composition of MgAl2O4 supported NiCeO2ZrO2 catalysts on coke formation and catalyst stability for dry reforming of methane. Catal Today 138:28–32. doi:10.1016/j.cattod.2008.04.038 CrossRefGoogle Scholar
  116. 116.
    San-Jose-Alonso D, Juan-Juan J, Illan-Gomez MJ, Roman-Martınez MC (2009) Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane. Appl Catal A Gen 371:54–59. doi:10.1016/j.apcata.2009.09.026 CrossRefGoogle Scholar
  117. 117.
    Rivas ME, Fierro JLG, Goldwasser MR, Pietri E, Perez-Zurita MJ, Griboval-Constant A, Leclercq G (2008) Structural features and performance of LaNi1−xRhxO3 system for the dry reforming of methane. Appl Catal A Gen 344:10–19. doi:10.1016/j.apcata.2008.03.023 CrossRefGoogle Scholar
  118. 118.
    Al-Fatish ASA, Ibrahim AA, Fakeeha AH, Soliman MA, Siddiqui MRH, Abasaeed AE (2009) Coke formation during CO2 reforming of CH4 over alumina-supported nickel catalysts. Appl Catal A Gen 364:150–155. doi:10.1016/j.apcata.2009.05.043 CrossRefGoogle Scholar
  119. 119.
    Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Nørskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426–429. doi:10.1038/nature02278 CrossRefGoogle Scholar
  120. 120.
    Baker RTK, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51–62. doi:10.1016/0021-9517(72)90032-2 CrossRefGoogle Scholar
  121. 121.
    Baker RTK, Harris PS, Thomas RB, Waite RJ (1973) Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal 30:86–95. doi:10.1016/0021-9517(73)90055-9 CrossRefGoogle Scholar
  122. 122.
    Xu J, Saeys M (2007) First principles study of the coking resistance and the activity of a boron promoted Ni catalyst. Chem Eng Sci 62:5039–5041. doi:10.1016/j.ces.2006.11.050 CrossRefGoogle Scholar
  123. 123.
    Rostrup-Nielsen JR, Trimm DL (1977) Mechanisms of carbon formation on nickel-containing catalysts. J Catal 48:155–165. doi:10.1016/0021-9517(77)90087-2 CrossRefGoogle Scholar
  124. 124.
    Bartholomew CH (1982) Carbon deposition in steam reforming and methanation. Catal Rev Sci Eng 24:67–112. doi:10.1080/03602458208079650 CrossRefGoogle Scholar
  125. 125.
    Rostrup-Nielsen JR (1993) Production of synthesis gas. Catal Today 18:305–324. doi:10.1016/0920-5861(93)80059-A CrossRefGoogle Scholar
  126. 126.
    Lercher JA, Bitter JH, Hally W, Niessen W, Seshan K (1996) Design of stable catalysts for methane-carbon dioxide reforming. Stud Surf Sci Catal 101:463–472. doi:10.1016/S0167-2991(96)80257-6 CrossRefGoogle Scholar
  127. 127.
    Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) CO2 reforming of methane to synthesis gas over sol-gel-made Ni/γ-Al2O3 catalysts from organometallic precursors. J Catal 194:424–430. doi:10.1006/jcat.2000.2957 CrossRefGoogle Scholar
  128. 128.
    Kim JH, Suh DJ, Park TJ, Kim KL (2000) Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts. Appl Catal A Gen 197:191–200. doi:10.1016/S0926-860X(99)00487-1 CrossRefGoogle Scholar
  129. 129.
    Frusteri F, Spadaro L, Arena F, Chuvilin A (2002) TEM evidence for factors affecting the genesis of carbon species on bare and K-promoted Ni/MgO catalysts during the dry reforming of methane. Carbon 40:1063–1070. doi:10.1016/S0008-6223(01)00243-3 CrossRefGoogle Scholar
  130. 130.
    Liu H, Li S, Zhang Ζ, Chen L, Zhou G, Wang J, Wang X (2008) Catalytic performance of monolithic foam Ni/SiC catalyst in carbon dioxide reforming of methane to synthesis gas. Catal Lett 120:111–115. doi:10.1007/s10562-007-9260-0 CrossRefGoogle Scholar
  131. 131.
    Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ (2009) Nickel catalyst activation in the carbon dioxide reforming of methane. Effect of pre-treatments. Appl Catal A Gen 355:27–32. doi:10.1016/j.apcata.2008.10.058 CrossRefGoogle Scholar
  132. 132.
    Fouskas A, Kollia M, Kambolis A, Papadopoulou C, Matralis H (2010) Effect of Boron on the coking resistance of Ni/Al2O3 catalysts for the dry reforming of methane. 9th Novel gas conversion symposium: C1–C4 chemistry: from fossil to bio resources, Lyon, France 30th May–3rd JuneGoogle Scholar
  133. 133.
    Zhang J, Wang H, Dalai AK (2008) Effects of metal content on activity and stability of Ni–Co bimetallic catalysts for CO2 reforming of CH4. Appl Catal A Gen 339:121–129. doi:10.1016/j.apcata.2008.01.027 CrossRefGoogle Scholar
  134. 134.
    Liu S, Guan L, Li J, Zhao N, Wei W, Sun Y (2008) CO2 reforming of CH4 over stabilized mesoporous Ni–CaO–ZrO2 composites. Fuel 87:2477–2481. doi:10.1016/j.fuel.2008.02.009 CrossRefGoogle Scholar
  135. 135.
    Rostrup-Nielsen JR, Hansen JHB (1993) CO2 reforming of CH4 over transition metals. J Catal 144:38–49. doi:10.1006/jcat.1993.1312 CrossRefGoogle Scholar
  136. 136.
    Ferreira-Aparicio P, Guerrero-Ruiz A, Rodriguez-Ramos I (1998) Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts. Appl Catal A Gen 170:177–187. doi:10.1016/S0926-860X(98)00048-9 CrossRefGoogle Scholar
  137. 137.
    Pena MA, Gomez JP, Fierro JLG (1996) New catalytic routes for syngas and hydrogen production. Appl Catal A Gen 144:7–57. doi:10.1016/0926-860X(96)00108-1 CrossRefGoogle Scholar
  138. 138.
    Wang HY, Ruckenstein E (2000) Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: the effect of support. Appl Catal A Gen 204:143–152. doi:10.1016/S0926-860X(00)00547-0 CrossRefGoogle Scholar
  139. 139.
    Tsipouriari VA, Efstathiou AM, Zhang ZL, Verykios XE (1994) Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts. Catal Today 21:579–587. doi:10.1016/0920-5861(94)80182-7 CrossRefGoogle Scholar
  140. 140.
    Zhang ZL, Tsipouriari VA, Efstathiou AM, Verykios XE (1996) Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts. I. Effects of support and metal crystallite size on reaction activity and deactivation characteristics. J Catal 158:51–63. doi:10.1006/jcat.1996.0005 CrossRefGoogle Scholar
  141. 141.
    Efstathiou AM, Kladi A, Tsipouriari VA, Verykios XE (1996) Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts. II. A steady-state tracing analysis: mechanistic aspects of the carbon and oxygen reaction pathways to form CO. J Catal 158:64–75. doi:10.1006/jcat.1996.0006 CrossRefGoogle Scholar
  142. 142.
    Verykios XE (2003) Mechanistic aspects of the reaction of CO2 reforming of methane over Rh/Al2O3 catalyst. Appl Catal A Gen 255:101–111. doi:10.1016/S0926-860X(03)00648-3 CrossRefGoogle Scholar
  143. 143.
    Wang HY, Au CT (1997) Carbon dioxide reforming of methane to syngas over SiO2-supported rhodium catalysts. Appl Catal A Gen 155:239–252. doi:10.1016/S0926-860X(96)00398-5 CrossRefGoogle Scholar
  144. 144.
    Munera JF, Irusta S, Cornaglia LM, Lombardo EA, Cesar DC, Schmal M (2007) Kinetics and reaction pathway of the CO2 reforming of methane on Rh supported on lanthanum-based solid. J Catal 245:25–34. doi:10.1016/j.jcat.2006.09.008 CrossRefGoogle Scholar
  145. 145.
    Kohn MP, Castaldi MJ, Farrauto RJ (2010) Auto-thermal and dry reforming of landfill gas over a Rh/gAl2O3 monolith catalyst. Appl Catal B Environ 94:125–133. doi:10.1016/j.apcatb.2009.10.029 CrossRefGoogle Scholar
  146. 146.
    Souza MMVM, Aranda DAG, Schmal M (2001) Reforming of methane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts. J Catal 204:498–511. doi:10.1006/jcat.2001.3398 CrossRefGoogle Scholar
  147. 147.
    Damyanova S, Bueno JMC (2003) Effect of CeO2 loading on the surface and catalytic behaviors of CeO2–Al2O3-supported Pt catalysts. Appl Catal A Gen 253:135–150. doi:10.1016/S0926-860X(03)00500-3 CrossRefGoogle Scholar
  148. 148.
    Souza MMVM, Schmal M (2003) Combination of carbon dioxide reforming and partial oxidation of methane over supported platinum catalysts. Appl Catal A Gen 255:83–92. doi:10.1016/S0926-860X(03)00646-X CrossRefGoogle Scholar
  149. 149.
    O’Connor AM, Schuurman Y, Ross JRH, Mirodatos C (2006) Transient studies of carbon dioxide reforming of methane over Pt/ZrO2 and Pt/Al2O3. Catal Today 115:191–198. doi:10.1016/j.cattod.2006.02.051 CrossRefGoogle Scholar
  150. 150.
    Gigola CE, Moreno MS, Costilla I, Sanchez MD (2007) Characterization of Pd-CeOx interaction on α-Al2O3 support. Appl Surf Sci 254:325–329. doi:10.1016/j.apsusc.2007.07.062 CrossRefGoogle Scholar
  151. 151.
    Zhao Y, Pan Y, Xie Y, Liu C (2008) Carbon dioxide reforming of methane over glow discharge plasma-reduced Ir/Al2O3 catalyst. Catal Commun 9:1558–1562. doi:10.1016/j.catcom.2007.12.024 CrossRefGoogle Scholar
  152. 152.
    Bitter JH, Hally W, Sechan K, van Ommen JG, Lercher JA (1996) The role of the oxidic support on the deactivation of Pt catalysts during the CO2 reforming of methane. Catal Today 29:349–353. doi:10.1016/0920-5861(95)00303-7 CrossRefGoogle Scholar
  153. 153.
    Tsyganok AI, Inaba M, Tsunoda T, Uchida K, Suzuki K, Takehira K, Hayakawa T (2005) Rational design of Mg–Al mixed oxide-supported bimetallic catalysts for dry reforming of methane. Appl Catal A Gen 292:328–343. doi:10.1016/j.apcata.2005.06.007 CrossRefGoogle Scholar
  154. 154.
    Erdőhelyi A, Cserenyi J, Solymosi F (1993) Activation of CH4 and its reaction with CO2 over supported Rh catalysts. J Catal 141:287–299. doi:10.1006/jcat.1993.1136 CrossRefGoogle Scholar
  155. 155.
    Sahli N, Petit C, Roger CA, Kiennemann A, Libs S, Bettahar MM (2006) Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane. Catal Today 113:187–193. doi:10.1016/j.cattod.2005.11.065 CrossRefGoogle Scholar
  156. 156.
    Cheng D, Zhu X, Ben Y, He F, Cui L, Liu C (2006) Carbon dioxide reforming of methane over Ni/Al2O3 treated with glow discharge plasma. Catal Today 115:205–210. doi:10.1016/j.cattod.2006.02.063 CrossRefGoogle Scholar
  157. 157.
    Zhu X, Huo P, Zhang Y, Cheng D, Liu C (2008) Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl Catal B Environ 81:132–140. doi:10.1016/j.apcatb.2007.11.042 CrossRefGoogle Scholar
  158. 158.
    Pan YX, Liu CJ, Shi P (2008) Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane. J Power Sources 176:46–53. doi:10.1016/j.jpowsour.2007.10.039 CrossRefGoogle Scholar
  159. 159.
    Guo J, Hou Z, Gao J, Zheng X (2008) Syngas production via combined oxy-CO2 reforming of methane over Gd2O3-modified Ni/SiO2 catalysts in a fluidized-bed reactor. Fuel 87:1348–1354. doi:10.1016/j.fuel.2007.06.018 CrossRefGoogle Scholar
  160. 160.
    Tomishige K, Yamazaki O, Chen Y, Yokoyama K, Li X, Fujimoto K (1998) Development of ultra-stable Ni catalysts for CO2 reforming of methane. Catal Today 45:35–39. doi:10.1016/S0920-5861(98)00238-7 CrossRefGoogle Scholar
  161. 161.
    Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Hydrogen and synthesis gas by steam- and CO2 reforming. Adv Catal 47:65–139. doi:10.1016/S0360-0564(02)47006-X CrossRefGoogle Scholar
  162. 162.
    Ruckenstein E, Hu YH (1995) Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts. Appl Catal A Gen 133:149–161. doi:10.1016/0926-860X(95)00201-4 CrossRefGoogle Scholar
  163. 163.
    Wang S, Lu GQM (1998) CO2 reforming of methane on Ni catalysts: effects of the support phase and preparation technique. Appl Catal B Environ 16:269–277. doi:10.1016/S0926-3373(97)00083-0 CrossRefGoogle Scholar
  164. 164.
    Chen YG, Tomishige K, Yokohama K, Fujimoto K (1999) Catalytic performance and catalyst structure of nickel-magnesia catalysts for CO2 reforming of methane. J Catal 184:479–490. doi:10.1006/jcat.1999.2469 CrossRefGoogle Scholar
  165. 165.
    Xu BQ, Wei JM, Wang HY, Sun KQ, Zhu QM (2001) Nano-MgO: novel preparation and application as support of Ni catalyst for CO2 reforming of methane. Catal Today 68:217–225. doi:10.1016/S0920-5861(01)00303-0 CrossRefGoogle Scholar
  166. 166.
    Djaidja A, Libs S, Kiennemann A, Barama A (2006) Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts. Catal Today 113:194–200. doi:10.1016/j.cattod.2005.11.066 CrossRefGoogle Scholar
  167. 167.
    Ruckenstein E, Hu YH (1997) The effect of precursor and preparation conditions of MgO on the CO2 reforming of CH4 over NiO/MgO catalysts. Appl Catal A Gen 154:185–205. doi:10.1016/S0926-860X(96)00372-9 CrossRefGoogle Scholar
  168. 168.
    Hu YH, Ruckenstein E (1996) An optimum NiO content in the CO2 reforming of CH4 with NiO/MgO solid solution catalysts. Catal Lett 36:145–149. doi:10.1007/BF00807611 CrossRefGoogle Scholar
  169. 169.
    Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301. doi:10.1016/0920-5861(91)80068-K CrossRefGoogle Scholar
  170. 170.
    Bhattacharyya A, Chang VW, Schumacher DJ (1998) CO2 reforming of methane to syngas I: evaluation of hydrotalcite clay-derived catalysts. Appl Clay Sci 13:317–328. doi:10.1016/S0169-1317(98)00030-1 CrossRefGoogle Scholar
  171. 171.
    Basile F, Benito P, Fornasari G, Vaccari A (2010) Hydrotalcite-type precursors of active catalysts for hydrogen production. Appl Clay Sci 48:250–259. doi:10.1016/j.clay.2009.11.027 CrossRefGoogle Scholar
  172. 172.
    Basile F, Fornasari G, Poluzzi E, Vaccari A (1998) Catalytic partial oxidation and CO2-reforming on Rh- and Ni-based catalysts obtained from hydrotalcite-type precursors. Appl Clay Sci 13:329–345. doi:10.1016/S0169-1317(98)00031-3 CrossRefGoogle Scholar
  173. 173.
    Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T (2003) Dry reforming of methane over catalysts derived from nickel-containing Mg–Al layered double hydroxides. J Catal 213:191–203. doi:10.1016/S0021-9517(02)00047-7 CrossRefGoogle Scholar
  174. 174.
    Tsyganok AI, Inaba M, Tsunoda T, Suzuki K, Takehira K, Hayakawa T (2004) Combined partial oxidation and dry reforming of methane to synthesis gas over noble metals supported on Mg–Al mixed oxide. Appl Catal A Gen 275:149–155. doi:10.1016/j.apcata.2004.07.030 CrossRefGoogle Scholar
  175. 175.
    Takehira K, Kawabata T, Shishido T, Murakami K, Ohi T, Shoro D, Honda M, Takaki K (2005) Mechanism of reconstitution of hydrotalcite leading to eggshelltype Ni loading on Mg–Al mixed oxide. J Catal 231:92–104. doi:10.1016/j.jcat.2005.01.025 CrossRefGoogle Scholar
  176. 176.
    Olafsen A, Daniel C, SchuurmanY RLB, Olsbye U, Mirodatos C (2006) Light alkanes CO2 reforming to synthesis gas over Ni based catalysts. Catal Today 115:179–185. doi:10.1016/j.cattod.2006.02.053 CrossRefGoogle Scholar
  177. 177.
    Ohi T, Miyata T, Li D, Shishido T, Kawabata T, Sano T, Takehira K (2006) Sustainability of Ni loaded Mg–Al mixed oxide catalyst in daily startup and shutdown operations of CH4 steam reforming. Appl Catal A Gen 308:194–203. doi:10.1016/j.apcata.2006.04.025 CrossRefGoogle Scholar
  178. 178.
    Lucredio AF, Assaf EM (2006) Cobalt catalysts prepared from hydrotalcite precursors and tested in methane steam reforming. J Power Sources 159:667–672. doi:10.1016/j.jpowsour.2005.10.108 CrossRefGoogle Scholar
  179. 179.
    Lucredio AF, Jerkiewicz G, Assaf EM (2008) Cobalt catalysts promoted with cerium and lanthanum applied to partial oxidation of methane reactions. Appl Catal B Environ 84:106–111. doi:10.1016/j.apcatb.2008.03.008 CrossRefGoogle Scholar
  180. 180.
    Vaccari A (1998) Preparation and catalytic properties of cationic and anionic clays. Catal Today 41:53–71. doi:10.1016/S0920-5861(98)00038-8 CrossRefGoogle Scholar
  181. 181.
    Aneggi E, De Leitenburg C, Dolcetti G, Trovarelli A (2006) Promotional effect of rare earths and transition metals in the combustion of diesel soot over CeO2 and CeO2–ZrO2. Catal Today 114:40–47. doi:10.1016/j.cattod.2006.02.008 CrossRefGoogle Scholar
  182. 182.
    Kambolis A, Matralis H, Trovarelli A, Papadopoulou C (2010) Ni/CeO2–ZrO2 catalysts for the dry reforming of methane. Appl Catal A Gen 377:16–26. doi:10.1016/j.apcata.2010.01.013 CrossRefGoogle Scholar
  183. 183.
    Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38(4):439–520. doi:10.1080/01614949608006464 CrossRefGoogle Scholar
  184. 184.
    Fierro JLG, Soria J, Sanz J, Rojo JM (1987) Induced changes in ceria by thermal treatments under vacuum or hydrogen. J Solid State Chem 66:154–162. doi:10.1016/0022-4596(87)90230-1 CrossRefGoogle Scholar
  185. 185.
    Gonzalez-DelaCruz VM, Holgado JP, Pereniguez R, Caballero A (2008) Morphology changes induced by strong metal–support interaction on a Ni–ceria catalytic system. J Catal 257:307–314. doi:10.1016/j.jcat.2008.05.009 CrossRefGoogle Scholar
  186. 186.
    Bernal S, Calvino JJ, Cauqui MA, Gatica JM, Lopez Cartes C, Pérez Omil JA, Pintado JM (2003) Some contributions of electron microscopy to the characterisation of the strong metal-support interaction effect. Catal Today 77:385–406. doi:10.1016/S0920-5861(02)00382-6 CrossRefGoogle Scholar
  187. 187.
    Valentini A, Carreno NLV, Probst LFD, Barison A, Ferreira AG, Leite ER, Longo E (2006) Ni:CeO2 nanocomposite catalysts prepared by polymeric precursor method. Appl Catal A Gen 310:174–182. doi:10.1016/j.apcata.2006.05.037 CrossRefGoogle Scholar
  188. 188.
    Terribile D, Trovarelli A, De Leitenburg C, Primavera A, Dolcetti G (1999) Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria–zirconia solid solutions. Catal Today 47:133–140. doi:10.1016/S0920-5861(98)00292-2 CrossRefGoogle Scholar
  189. 189.
    Wang S, (Max) Lu GQ (1998) Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane. Appl Catal B Environ 19:267–277. doi:10.1016/S0926-3373(98)00081-2 CrossRefGoogle Scholar
  190. 190.
    Kaspar J, Di Monte R, Fornasiero P, Graziani M, Bradshaw H, Norman C (2001) Dependency of the oxygen storage capacity in zirconia–ceria solid solutions upon textural properties. Top Catal 16–17:83–87. doi:10.1023/A:1016682831177 CrossRefGoogle Scholar
  191. 191.
    Damyanova S, Pawelec B, Arishtirova K, Martinez Huerta MV, Fierro JLG (2009) The effect of CeO2 on the surface and catalytic properties of Pt/CeO2–ZrO2 catalysts for methane dry reforming. Appl Catal B Environ 89:149–159. doi:10.1016/j.apcatb.2008.11.035 CrossRefGoogle Scholar
  192. 192.
    Montoya JA, Romero-Pascual E, Gimon C, Del Angel P, Monzon A (2000) Methane reforming with CO2 over Ni/ZrO2–CeO2 catalysts prepared by sol-gel. Catal Today 63:71–85. doi:10.1016/S0920-5861(00)00447-8 CrossRefGoogle Scholar
  193. 193.
    Roh HS, Potdar HS, Jun KW, Kim JW, Oh YS (2004) Carbon dioxide reforming of methane over Ni incorporated into Ce–ZrO2 catalysts. Appl Catal A Gen 276:231–239. doi:10.1016/j.apcata.2004.08.009 CrossRefGoogle Scholar
  194. 194.
    Kumar P, Sun Y, Idem RO (2007) Nickel-based ceria, zirconia, and ceria–zirconia catalytic systems for low-temperature carbon dioxide reforming of methane. Energy Fuel 21:3113–3123. doi:10.1021/ef7002409 CrossRefGoogle Scholar
  195. 195.
    Chen J, Wu Q, Zhang J, Zhang J (2008) Effect of preparation methods on structure and performance of Ni/Ce0.75Zr0.25O2 catalysts for CH4–CO2 reforming. Fuel 87:2901–2907. doi:10.1016/j.fuel.2008.04.015 CrossRefGoogle Scholar
  196. 196.
    Yang Z, Wei Y, Fu Z, Lu Z, Hermansson K (2008) Facilitated vacancy formation at Zr-doped ceria(111) surfaces. Surf Sci 602:1199–1206. doi:10.1016/j.susc.2008.01.013 CrossRefGoogle Scholar
  197. 197.
    Kuznetsova TG, Sadykov VA (2008) Specific features of the defect structure of metastable nanodisperse ceria, zirconia, and related materials. Kinet Catal 49:840–858. doi:10.1134/S0023158408060098 CrossRefGoogle Scholar
  198. 198.
    Koubaissy B, Pietraszek A, Roger AC, Kiennemann A (2010) CO2 reforming of methane over Ce-Zr-Ni-Me mixed catalysts. Catal Today 157:436–439. doi:10.1016/j.cattod.2010.01.050 CrossRefGoogle Scholar
  199. 199.
    Otsuka K, Wang Y, Nakamura M (1999) Direct conversion of methane to synthesis gas through gas-solid reaction using CeO2–ZrO2 solid solution at moderate temperature. Appl Catal A Gen 183:317–324. doi:10.1016/S0926-860X(99)00070-8 CrossRefGoogle Scholar
  200. 200.
    Wang JB, Tai YL, Dow WP, Huang TJ (2001) Study of ceria-supported nickel catalyst and effect of yttria doping on carbon dioxide reforming of methane. Appl Catal A Gen 218:69–79. doi:10.1016/S0926-860X(01)00620-2 CrossRefGoogle Scholar
  201. 201.
    Putna ES, Shereck B, Gorte RJ (1998) Adsorption and reactivity of lanthana with CO. Appl Catal B Environ 17:101–106. doi:10.1016/S0926-3373(98)00006-X CrossRefGoogle Scholar
  202. 202.
    Gronchi P, Centola E, Del Rosso R (1997) Dry reforming of CH4 with Ni and Rh metal catalysts supported on SiO2 and La2O3. Appl Catal A Gen 152:83–92. doi:10.1016/S0926-860X(96)00358-4 CrossRefGoogle Scholar
  203. 203.
    Zhang WD, Liu BS, Zhu C, Tian YL (2005) Preparation of La2NiO4/ZSM-5 catalyst and catalytic performance in CO2/CH4 reforming to syngas. Appl Catal A Gen 292:138–143. doi:10.1016/j.apcata.2005.05.018 CrossRefGoogle Scholar
  204. 204.
    Jeong H, Kim KL, Kim D, Song IK (2006) Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts. J Mol Catal A Chem 246:43–48. doi:10.1016/j.molcata.2005.10.013 CrossRefGoogle Scholar
  205. 205.
    Luengnaruemitchai A, Kaengsilalai A (2008) Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide. Chem Eng J 144:96–102. doi:10.1016/j.cej.2008.05.023 CrossRefGoogle Scholar
  206. 206.
    Liu H, Li S, Zhang S, Wang J, Zhou G, Chen L, Wang X (2008) Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas. Catal Commun 9:51–54. doi:10.1016/j.catcom.2007.05.002 CrossRefGoogle Scholar
  207. 207.
    Boukha Z, Kacimi M, Pereira MFR, Faria JL, Figueiredo JL, Ziyad M (2007) Methane dry reforming on Ni loaded hydroxyapatite and fluoroapatite. Appl Catal A Gen 317:299–309. doi:10.1016/j.apcata.2006.10.029 CrossRefGoogle Scholar
  208. 208.
    Kaengsilalai A, Luengnaruemitchai A, Jitkarnka S, Wongkasemjit S (2007) Potential of Ni supported on KH zeolite catalysts for carbon dioxide reforming of methane. J Power Sources 165:347–352. doi:10.1016/j.jpowsour.2006.12.005 CrossRefGoogle Scholar
  209. 209.
    Yamazaki O, Nozaki T, Omata K, Fujimoto K (1992) Reduction of carbon dioxide by methane with Ni-on-MgO-CaO containing catalysts. Chem Lett 1953–1954. doi:10.1246/cl.1992.1953
  210. 210.
    Zhang ZL, Verykios XE (1994) Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catal Today 21:589–595. doi:10.1016/0920-5861(94)80183-5 CrossRefGoogle Scholar
  211. 211.
    Choudhary VR, Rajput AM, Prabhakar B (1994) NiO/CaO-catalyzed formation of syngas by coupled exothermic oxidative conversion and endothermic CO2 and steam reforming of methane. Angew Chem Int Ed Engl 33:2104–2106. doi:10.1002/anie.199421041 CrossRefGoogle Scholar
  212. 212.
    Tang SB, Qiu FL, Lu SJ (1995) Effect of supports on the carbon deposition of nickel catalysts for methane reforming with CO2. Catal Today 24:253–255. doi:10.1016/0920-5861(95)00036-F CrossRefGoogle Scholar
  213. 213.
    Goula MA, Lemonidou AA, Efstathiou AM (1996) Characterization of carbonaceous species formed during reforming of CH4 with CO2 over Ni/CaO-Al2O3 catalysts studied by various transient techniques. J Catal 161:626–640. doi:10.1006/jcat.1996.0225 CrossRefGoogle Scholar
  214. 214.
    Chang JS, Park SE, Chon H (1996) Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts. Appl Catal A Gen 145:111–124. doi:10.1016/0926-860X(96)00150-0 CrossRefGoogle Scholar
  215. 215.
    Cheng Z, Wu Q, Li J, Zhu Q (1996) Effects of promoters and preparation procedures on reforming of methane with carbon dioxide over Ni/Al2O3 catalyst. Catal Today 30:147–155. doi:10.1016/0920-5861(95)00005-4 CrossRefGoogle Scholar
  216. 216.
    Horiuchi T, Sakuma K, Fukui T, Kubo Y, Osaki T, Mori T (1996) Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst. Appl Catal A Gen 144:111–120. doi:10.1016/0926-860X(96)00100-7 CrossRefGoogle Scholar
  217. 217.
    Zhang Z, Verykios XE, MacDonald SM, Affrossman S (1996) Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts. J Phys Chem 100:744–754. doi:10.1021/jp951809e CrossRefGoogle Scholar
  218. 218.
    Quincoces CE, Perez de Vargas S, Diaz A, Montes M, Gonzalez MG (1998) Morphological changes of Ca promoted Ni/SiO2 catalysts and carbon deposition during CO2 reforming of methane. Stud Surf Sci Catal 119:837–842. doi:10.1016/S0167-2991(98)80536-3 CrossRefGoogle Scholar
  219. 219.
    Wang S, Lu GQ (2000) Effects of promoters on catalytic activity and carbon deposition of Ni/γ-Al2O3 catalysts in CO2 reforming of CH4. J Chem Technol Biotechnol 75:589–595. doi:10.1002/1097-4660(200007) CrossRefGoogle Scholar
  220. 220.
    Quincoces CE, Dicundo S, Alvarez AM, González MG (2001) Effect of addition of CaO on Ni/Al2O3 catalysts over CO2 reforming of methane. Mater Lett 50:21–27. doi:10.1016/S0167-577X(00)00406-7 CrossRefGoogle Scholar
  221. 221.
    Hou Z, Yokota O, Tanaka T, Yashima T (2003) Characterization of Ca-promoted Ni/α-Al2O3 catalyst for CH4 reforming with CO2. Appl Catal A Gen 253:381–387. doi:10.1016/S0926-860X(03)00543-X CrossRefGoogle Scholar
  222. 222.
    Dias JAC, Assaf JM (2003) Influence of calcium content in Ni/CaO/γ-Al2O3 catalysts for CO2-reforming of methane. Catal Today 85:59–68. doi:10.1016/S0920-5861(03)00194-9 CrossRefGoogle Scholar
  223. 223.
    Hou Z, Yokota O, Tanaka T, Yashima T (2003) A novel KCaNi/α-Al2O3 catalyst for CH4 reforming with CO2. Catal Lett 87:37–42. doi:10.1023/A:1022849009431 CrossRefGoogle Scholar
  224. 224.
    Yashima T (2005) High coke-resistance of K-Ca-promoted Ni/α-Al2O3catalyst for CH4 reforming with CO2. React Kinet Catal Lett 84:229–235. doi:10.1007/s11144-005-0214-5 CrossRefGoogle Scholar
  225. 225.
    Ping C, Yin HZ, Ming ZX (2005) Production of synthesis gas via methane reforming with CO2 on Ni/SiO2 catalysts promoted by alkali and alkaline earth metals. Chin J Chem 23:847–851. doi:10.1002/cjoc.200590847 CrossRefGoogle Scholar
  226. 226.
    Chang JS, Hong DY, Li X, Park SE (2006) Thermogravimetric analyses and catalytic behaviors of zirconia-supported nickel catalysts for carbon dioxide reforming of methane. Catal Today 115:186–190. doi:10.1016/j.cattod.2006.02.052 CrossRefGoogle Scholar
  227. 227.
    Zhang WD, Liu BS, Tian YL (2007) CO2 reforming of methane over Ni/Sm2O3–CaO catalyst prepared by a sol-gel technique. Catal Commun 8:661–667. doi:10.1016/j.catcom.2006.08.020 CrossRefGoogle Scholar
  228. 228.
    Roh H, Jun K (2008) Carbon dioxide reforming of methane over Ni catalysts supported on Al2O3 modified with La2O3, MgO, and CaO. Catal Surv Asia 12:239–252. doi:10.1007/s10563-008-9058-0 CrossRefGoogle Scholar
  229. 229.
    Bellido JDA, De Souza JE, M’Peko J, Assaf EM (2009) Effect of adding CaO to ZrO2 support on nickel catalyst activity in dry reforming of methane. Appl Catal A Gen 358:215–223. doi:10.1016/j.apcata.2009.02.014 CrossRefGoogle Scholar
  230. 230.
    Nandini A, Pant KK, Dhingra SC (2005) K–, CeO2–, and Mn-promoted Ni/Al2O3 catalysts for stable CO2 reforming of methane. Appl Catal A Gen 290:166–174. doi:10.1016/j.apcata.2005.05.016 CrossRefGoogle Scholar
  231. 231.
    Molenbroek AM, Nørskov JK, Clausen BS (2001) Structure and reactivity of Ni–Au nanoparticle catalysts. J Phys Chem B 105:5450–5458. doi:10.1021/jp0043975 CrossRefGoogle Scholar
  232. 232.
    Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaard I (1998) Design of a surface alloy catalyst for steam reforming. Science 279:1913–1915. doi:10.1126/science.279.5358.1913 CrossRefGoogle Scholar
  233. 233.
    Guczi L, Stefler G, Geszti O, Sajo I, Paszti Z, Tompos A, Schay Z (2010) Methane dry reforming with CO2: a study on surface carbon species. Appl Catal A Gen 375:236–246. doi:10.1016/j.apcata.2009.12.040 CrossRefGoogle Scholar
  234. 234.
    Inui T, Saigo K, Fujii Y, Fujioka K (1995) Catalytic combustion of natural gas as the role of on-site heat supply in rapid catalytic CO2–H2O reforming of methane. Catal Today 26:295–302. doi:10.1016/0920-5861(95)00151-9 CrossRefGoogle Scholar
  235. 235.
    Chen Y, Tomishige K, Yokohama K, Fujimoto K (1997) Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Appl Catal A Gen 165:335–347. doi:10.1016/S0926-860X(97)00216-0 CrossRefGoogle Scholar
  236. 236.
    Nagaoka K, Jentys A, Lercher A (2005) Methane autothermal reforming with and without ethane over mono- and bimetal catalysts prepared from hydrotalcite precursors. J Catal 229:185–196. doi:10.1016/j.jcat.2004.10.006 CrossRefGoogle Scholar
  237. 237.
    Arbag H, Yasyerli S, Yasyerli N, Dogu G (2010) Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry reforming of methane. Int J Hydrogen Energy 35:2296–2304. doi:10.1016/j.ijhydene.2009.12.109 CrossRefGoogle Scholar
  238. 238.
    Garcia-Dieguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ (2010) Improved Pt-Ni nanocatalysts for dry reforming of methane. Appl Catal A Gen 377:191–199. doi:10.1016/j.apcata.2010.01.038 CrossRefGoogle Scholar
  239. 239.
    Chen HW, Wang CY, Yu CH, Tseng LT, Liao PH (2004) Carbon dioxide reforming of methane reaction catalyzed by stable nickel copper catalysts. Catal Today 97:173–180. doi:10.1016/j.cattod.2004.03.067 CrossRefGoogle Scholar
  240. 240.
    Tomishige K, Himeno Y, Matsuo Y, Yoshinaga Y, Fujimoto K (2000) Catalytic performance and carbon deposition behavior of a NiO–MgO solid solution in methane reforming with carbon dioxide under pressurized conditions. Ind Eng Chem Res 39:1891–1897. doi:10.1021/ie990884z CrossRefGoogle Scholar
  241. 241.
    Goldwasser MR, Rivas ME, Pietri E, Pérez-Zurita MJ, Cubeiro ML, Gingembre L, Leclercq L, Leclercq G (2003) Perovskites as catalysts precursors: CO2 reforming of CH4 on Ln1−xCaxRu0.8Ni0.2O3 (Ln=La, Sm, Nd). Appl Catal A Gen 255:45–57. doi:10.1016/S0926-860X(03)00643-4 CrossRefGoogle Scholar
  242. 242.
    Goldwasser MR, Rivas ME, Lugo ML, Pietri E, Pérez-Zurita MJ, Cubeiro ML, Griboval-ConstantA LG (2005) Combined methane reforming in presence of CO2 and O2 over LaFe1−xCoxO3 mixed-oxide perovskites as catalysts precursors. Catal Today 107–108:106–113. doi:10.1016/j.cattod.2005.07.073 CrossRefGoogle Scholar
  243. 243.
    Valderrama G, Goldwasser MR, de Navarro CU, Tatibouet JM, Barrault J, Batiot-Dupeyrat C, Martinez F (2005) Dry reforming of methane over Ni perovskite type oxides. Catal Today 107–108:785–791. doi:10.1016/j.cattod.2005.07.010 CrossRefGoogle Scholar
  244. 244.
    De Araujo GC, De Lima SM, Assaf JM, Pena MA, Fierro JLG, Rangel MC (2008) Catalytic evaluation of perovskite-type oxide LaNi1−xRuxO3 in methane dry reforming. Catal Today 133–135:129–135. doi:10.1016/j.cattod.2007.12.049 CrossRefGoogle Scholar
  245. 245.
    Gallego GS, Mondragon F, Tatibouet JM, Barrault J, Batiot-Dupeyrat C (2008) Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor—characterization of carbon deposition. Catal Today 133–135:200–209. doi:10.1016/j.cattod.2007.12.075 CrossRefGoogle Scholar
  246. 246.
    Kharton VV, Viskup AP, Naumovich EN, Tikhonovich VN (1999) Oxygen permeability of LaFe1−xNixO3−δ solid solutions. Mater Res Bull 34:1311–1317. doi:10.1016/S0025-5408(99)00117-8 CrossRefGoogle Scholar
  247. 247.
    Mawdsley JR, Krause TR (2008) Rare earth-first-row transition metal perovskites as catalysts for the autothermal reforming of hydrocarbon fuels to generate hydrogen. Appl Catal A Gen 334:311–320. doi:10.1016/j.apcata.2007.10.018 CrossRefGoogle Scholar
  248. 248.
    Gallego GS, Marın JG, Batiot-Dupeyrat C, Barrault J, Mondragon F (2008) Influence of Pr and Ce in dry methane reforming catalysts produced from La1−xAxNiO3−δ perovskites. Appl Catal A Gen 369:97–103. doi:10.1016/j.apcata.2009.09.004 CrossRefGoogle Scholar
  249. 249.
    Choudhary VR, Mondal KC (2006) CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Appl Energy 83:1024–1032. doi:10.1016/j.apenergy.2005.09.008 CrossRefGoogle Scholar
  250. 250.
    Rivas ME, Fierro JLG, Guil-Lopez R, Pena MA, La Parola V, Goldwasser MR (2008) Preparation and characterization of nickel-based mixed-oxides and their performance for catalytic methane decomposition. Catal Today 133–135:367–373. doi:10.1016/j.cattod.2007.12.045 CrossRefGoogle Scholar
  251. 251.
    Gallego GS, Mondragon F, Barrault J, Tatibouet JM, Batiot-Dupeyrat C (2006) CO2 reforming of CH4 over La–Ni based perovskite precursors. Appl Catal A Gen 311:164–171. doi:10.1016/j.apcata.2006.06.024 CrossRefGoogle Scholar
  252. 252.
    Guo J, Lou H, Zhu Y, Zheng X (2003) La-based perovskite precursors preparation and its catalytic activity for CO2 reforming of CH4. Mater Lett 57:4450–4455. doi:10.1016/S0167-577X(03)00341-0 CrossRefGoogle Scholar
  253. 253.
    Lima SM, Assaf JM, Pena MA, Fierro JLG (2006) Structural features of La1−xCexNiO3 mixed oxides and performance for the dry reforming of methane. Appl Catal A Gen 311:94–104. doi:10.1016/j.apcata.2006.06.010 CrossRefGoogle Scholar
  254. 254.
    Gallego GS, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragon F (2008) Dry reforming of methane over LaNi1−yByO3−d (B = Mg, Co) perovskites used as catalyst precursor. Appl Catal A Gen 334:251–258. doi:10.1016/j.apcata.2007.10.010 CrossRefGoogle Scholar
  255. 255.
    Pichas C, Pomonis P, Petrakis D, Ladavos A (2010) Kinetic study of the catalytic dry reforming of CH4 with CO2 over La2−xSrxNiO4 perovskite-type oxides. Appl Catal A Gen 386:116–123. doi:10.1016/j.apcata.2010.07.043 CrossRefGoogle Scholar
  256. 256.
    Balachandran U, Dusek JT, Mieville RL, Poeppel RB, Kleefisch MS, Pei S, Kobylinski TP, Udovich CA, Bose AC (1995) Dense ceramic membranes for partial oxidation of methane to syngas. Appl Catal A Gen 133:19–29. doi:10.1016/0926-860X(95)00159-X CrossRefGoogle Scholar
  257. 257.
    Valderrama G, Kiennemann A, Goldwasser MR (2008) Dry reforming of CH4 over solid solutions of LaNi1−xCoxO3. Catal Today 133–135:142–148. doi:10.1016/j.cattod.2007.12.069 CrossRefGoogle Scholar
  258. 258.
    Goldwasser MR, Rivas ME, Pietri E, Pérez-Zurita MJ, Cubeiro ML, Griboval-Constant A, Leclercq G (2005) Perovskites as catalysts precursors: synthesis and characterization. J Mol Catal A Gen 228:325–331. doi:10.1016/j.molcata.2004.09.030 CrossRefGoogle Scholar
  259. 259.
    Khalesi A, Arandiyan HR, Parvari M (2008) Effects of lanthanum substitution by strontium and calcium in La-Ni-Al perovskite oxides in dry reforming of methane. Chin J Catal 29:960–968. doi:10.1016/S1872-2067(08)60079-0 CrossRefGoogle Scholar
  260. 260.
    Valderrama G, Kiennemann A, Goldwasser MR (2010) La-Sr-Ni-Co-O based perovskite-type solid solutions as catalyst precursors in the CO2 reforming of methane. J Power Sources 195:1765–1771. doi:10.1016/j.jpowsour.2009.10.004 CrossRefGoogle Scholar
  261. 261.
    Provendier H, Petit C, Estournes C, Kiennemann A (1998) Dry reforming of methane. Interest of La-Ni-Fe solid solutions compared to LaNiO3 and LaFeO3. Stud Surf Sci Catal 119:741–746. doi:10.1016/S0167-2991(98)80520-X CrossRefGoogle Scholar
  262. 262.
    Provendier H, Petit C, Estournes C, Libs S, Kiennemann A (1999) Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition. Appl Catal A Gen 180:163–173. doi:10.1016/S0926-860X(98)00343-3 CrossRefGoogle Scholar
  263. 263.
    Rivas I, Alvarez J, Pietri E, Pérez-Zurita MJ, Goldwasser MR (2010) Perovskite-type oxides in methane dry reforming: effect of their incorporation into a mesoporous SBA-15 silica-host. Catal Today 149:388–393. doi:10.1016/j.cattod.2009.05.028 CrossRefGoogle Scholar
  264. 264.
    Nagaoka K, Okamura M, Aika K (2001) Titania supported ruthenium as coking-resistant catalyst for high pressure dry reforming of methane. Catal Commun 2:255–260. doi:10.1016/S1566-7367(01)00043-7 CrossRefGoogle Scholar
  265. 265.
    Shamsi A, Johnson CD (2003) Effect of pressure on the carbon deposition route in CO2 reforming of 13CH4. Catal Today 84:17–25. doi:10.1016/S0920-5861(03)00296-7 CrossRefGoogle Scholar
  266. 266.
    Corthals S, Witvrouwen T, Jacobs P, Sels B (2011) Development of dry reforming catalysts at elevated pressure: D-optimal vs. full factorial design. Catal Today 159:12–24. doi:10.1016/j.cattod.2010.06.021 CrossRefGoogle Scholar
  267. 267.
    Horvath A, Stefler G, Geszti O, Kienneman A, Pietraszek A, Guczi L (2010) Methane dry reforming with CO2 on CeZr-oxide supported Ni, NiRh and NiCo catalysts prepared by sol-gel technique: relationship between activity and coke formation. Catal Today 169(1):102–111. doi:10.1016/j.cattod.2010.08.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christina Papadopoulou
    • 1
  • Haris Matralis
    • 1
  • Xenophon Verykios
    • 2
  1. 1.Department of ChemistryUniversity of PatrasPatrasGreece
  2. 2.Department of Chemical EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations