How old are RNA Networks?

  • Toni Daly
  • X. Sylvia Chen
  • David Penny
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 722)


Some major classes of RNAs (such as mRNA, rRNA, tRNA and RNase P) are ubiquitous in all living systems so are inferred to have arisen early during the origin of life. However, the situation is not so clear for the system of RNA regulatory networks that continue to be uncovered, especially in eukaryotes. It is increasingly being recognised that networks of small RNAs are important for regulation in all cells, but it is not certain whether the origin of these networks are as old as rRNAs and tRNA. Another group of ncRNAs, including snoRNAs, occurs mainly in archaea and eukaryotes and their ultimate origin is less certain, although perhaps the simplest hypothesis is that they were present in earlier stages of life and were lost from bacteria. Some RNA networks may trace back to an early stage when there was just RNA and proteins, the RNP-world; before DNA.


These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yarus M. Getting past the RNA world: The initial Darwinian ancestor. Cold Spring Harbor Perspectives in Biology 2010. doi: 10.1101/cshperspect.a003590.Google Scholar
  2. 2.
    Penny D, Collins LJ. Evolutionary genomics leads the way. In: Caetano-Anolles, ed. Evolutionary Genomics and Systems Biology. Hoboken: Wiley-Blackwell, 2010:3–16.Google Scholar
  3. 3.
    Gardner PP, Daub J, Täte JG et al. Rfam: updates to the RNA families database. Nucl Acids Res 2009; 37:D136–D140.PubMedCrossRefGoogle Scholar
  4. 4.
    Boria I, Gruber AR, Tanzer A et al. Nematode sbRNAs: homologs of vertebrate Y RNAs. J Mol Evol 2010; 70:346–358.PubMedCrossRefGoogle Scholar
  5. 5.
    Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Genet 2009; 10:102–108.Google Scholar
  6. 6.
    Bartel DP, Chen CZ. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev 2004; 5:396–400.Google Scholar
  7. 7.
    Carlsbecker A, Lee JY, Roberts CJ et al. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 2010; 465:316–321.PubMedCrossRefGoogle Scholar
  8. 8.
    Cullen BR. Viral and cellular messenger RNA targets of viral microRNAs. Nature 2009; 457:421–425.PubMedCrossRefGoogle Scholar
  9. 9.
    Ouellet DL, Plante I, Landry P et al. Identification of functional microRNAs released through asymmetrical processing of HIV-1 TAR element. Nucl Acids Res 2008; 36:2353–2365.PubMedCrossRefGoogle Scholar
  10. 10.
    Lin J, Cullen BR. Analysis of the interaction of primate retroviruses with the human RNA interference machinery. J Virol 2007; 81:12218–12226.PubMedCrossRefGoogle Scholar
  11. 11.
    Dunoyer P, Himber C, Voinnet O. Induction, suppression and requirement of RNA silencing pathways in virulent agrobacterium tumefaciens infections. Nat Genet 2006; 38:258–263.PubMedCrossRefGoogle Scholar
  12. 12.
    Dong Z, Han MS, Federoff N. The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. PNAS 2008; 105:9970–9975.PubMedCrossRefGoogle Scholar
  13. 13.
    Okamura K, Liu N, Lai EC. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell 2009; 36:431–444.PubMedCrossRefGoogle Scholar
  14. 14.
    Berezikov E, Chung W, Willis J et al. Mammalian mirtron genes. Mol Cell 2007; 28:328–333.PubMedCrossRefGoogle Scholar
  15. 15.
    Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science 2005; 309:1519–1524.PubMedCrossRefGoogle Scholar
  16. 16.
    Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature 2009; 457:413–420.PubMedCrossRefGoogle Scholar
  17. 17.
    Carthew RW, Sonheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell 2009; 136:642–655.PubMedCrossRefGoogle Scholar
  18. 18.
    Leung AKL, Sharp PA. MicroRNAs: A safeguard against turmoil? Cell 2007; 130:581–585.PubMedCrossRefGoogle Scholar
  19. 19.
    Orom UA, Nielsen FC, Lund AH. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 2008; 30:460–471.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee YS, Shibata Y, Malhotra A et al. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes and Dev 2009; 23:2639–2649.PubMedCrossRefGoogle Scholar
  21. 21.
    Haussecker D, Huang Y, Lau A et al. Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 2010; 16:673–695.PubMedCrossRefGoogle Scholar
  22. 22.
    Kulkarni M, Ozgur S, Stoecklin G. On track with P-bodies. Biochem Soc Trans 2010; 38:242.PubMedCrossRefGoogle Scholar
  23. 23.
    Guang S, Bochner AF, Pavelec DM et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus. Science 2008; 321:537–541.PubMedCrossRefGoogle Scholar
  24. 24.
    Bartel B. MicroRNAs directing siRNA biogenesis. Nat Struct Mol Biol 2005; 12:569–571.PubMedCrossRefGoogle Scholar
  25. 25.
    Miyoshi K, Miyoshi T, Hartig JV et al. Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila. RNA. 2010; 16:506–515.PubMedCrossRefGoogle Scholar
  26. 26.
    Robine N, Lau NC, Balla S et al. A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr Biol 2009; 19:2066–2076.PubMedCrossRefGoogle Scholar
  27. 27.
    Malone CD, Hannon GJ. Small RNAs as guardians of the genome. Cell 2009; 136:656–668.PubMedCrossRefGoogle Scholar
  28. 28.
    Li C, Vagin VV, Lee S et al. Collapse of germline piRNAs in the absence of Argonaute3 reveals somatic piRNAs in flies. Cell 2009; 137:509–521.PubMedCrossRefGoogle Scholar
  29. 29.
    Gottesman S. Micros formicrobes:non coding regulatory RNAs in bacteria. Trends Genet. 2005; 21:399–404.PubMedCrossRefGoogle Scholar
  30. 30.
    de Nooijer S, Holland BR, Penny D. Eukaryote origins: there was no Garden of Eden? PLoS One 2009; 4:e5507.PubMedCrossRefGoogle Scholar
  31. 31.
    Boerlijst MC, Hogeweg P. Spiral wave structure in prebiotic evolution—hypercycles stable against parasites. Physica D 1991; 48:17–28.CrossRefGoogle Scholar
  32. 32.
    Yigit E, Batista PJ, Bei Y et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 2006; 127:747–757.PubMedCrossRefGoogle Scholar
  33. 33.
    de Vries W, Berkhout B. RNAi suppressors encoded by pathogenic human viruses. Int J Biochem Cell Biol 2008; 40:2007–2012.PubMedCrossRefGoogle Scholar
  34. 34.
    Parameswaran P, Sklan E, Wilkins C et al. Six RNA viruses and forty-one hosts: viral small RNAs and modulation of small RNA repertoires in vertebrate and invertebrate systems. PLoS Pathogens 2010; 6:el000764.CrossRefGoogle Scholar
  35. 35.
    Ruiz-Ferrer V, Voinnet O. Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 2009; 60:485–510.PubMedCrossRefGoogle Scholar
  36. 36.
    Lipardi C, Paterson BM. Identification of an RNA-dependent RNA polymerase in Drosophila involved in RNAi and transposon suppression. PNAS 2009; 106:15645–15650.PubMedCrossRefGoogle Scholar
  37. 37.
    Maida Y, Yasukawa M, Furuuchi M et al. An RNA dependent RNA polymerase formed by hTERT and the RNase MRP RNA. Nature 2009; 461:230–235.PubMedCrossRefGoogle Scholar
  38. 38.
    Watanabe T, Totoki Y, Toyoda A et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 2008; 453:539–543.PubMedCrossRefGoogle Scholar
  39. 39.
    Hartig JV, Tomari Y, Forstemann K. piRNAs—the ancient hunters of genome invaders. Genes Dev 2007; 21:1707–1713.PubMedCrossRefGoogle Scholar
  40. 40.
    Brennecke J, Malone CD, Aravin AA et al. An epigenetic role for maternally inherited piRNAs in transposon silencing. Science 2008; 322:1387–1392.PubMedCrossRefGoogle Scholar
  41. 41.
    Ding S, Voinnet O. Antiviral immunity directed by small RNAs. Cell 2007; 130:413–426.PubMedCrossRefGoogle Scholar
  42. 42.
    Wang H, Buckley KJ, Yang X et al. Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 2005; 79:7410–7418.PubMedCrossRefGoogle Scholar
  43. 43.
    Raja P, Sanville BC, Buchmann RC et al. Viral genome methylation as an epigenetic defence against geminiviruses. J Virol 2008; 82:8997–9007.PubMedCrossRefGoogle Scholar
  44. 44.
    Jansen R, Embden JD, Gaastra W et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43:1565–1575.PubMedCrossRefGoogle Scholar
  45. 45.
    Touchan M, Rocha EPC. The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella. PloS One 2010; 5(6):e11126.CrossRefGoogle Scholar
  46. 46.
    Bolotin A, Quinquis B, Sorokin A et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005; 151:2551–2561.PubMedCrossRefGoogle Scholar
  47. 47.
    Wiedenheft B, Zhou K, Jinek M et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 2009; 17:904–912.PubMedCrossRefGoogle Scholar
  48. 48.
    Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 2008; 320:1047–1050.PubMedCrossRefGoogle Scholar
  49. 49.
    Marraffini LA, Sontheimer EJ. Self versus nonself discrimination during CRISPR RNA-directed immunity. Nature 2010; 463:568–571.PubMedCrossRefGoogle Scholar
  50. 50.
    Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008; 322:1843–1845.PubMedCrossRefGoogle Scholar
  51. 51.
    Hale C, Kleppe K, Terns RM et al. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 2008; 14:2572–2579.PubMedCrossRefGoogle Scholar
  52. 52.
    Penny D, Poole AM. Lateral gene transfer: some theoretical aspects. NZ Bio Science 2003; 12:32–35.Google Scholar
  53. 53.
    Andersson AF, Banfield JF. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 2008; 320:1047–1050.PubMedCrossRefGoogle Scholar
  54. 54.
    Licatalosi DD, Darnell RB. RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 2010; 11:75–87.PubMedCrossRefGoogle Scholar
  55. 55.
    Lioliou E, Romilly C, Romby P et al. RNA-mediated regulation in bacteria: from natural to artificial systems. New Biotech 2010; 27:222–235.CrossRefGoogle Scholar
  56. 56.
    Sashital DG, Doudna JA. Structural insights into RNA interference. Curr Opin Struct Biol 2010; 20:90–97.PubMedCrossRefGoogle Scholar
  57. 57.
    Newman AJ, Nagai K. Structural studies of the spliceosome: blind men and an elephant. Curr Opin Struct Biol 2010; 20:82–89.PubMedCrossRefGoogle Scholar
  58. 58.
    Staley JP, Woolford JL Jr. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr Opin Cell Biol 2009; 21:109–118.PubMedCrossRefGoogle Scholar
  59. 59.
    Bachellerie JP, Cavaille J, Huttenhofer A. The expanding snoRNA world. Biochimie 2002; 84:775–790.PubMedCrossRefGoogle Scholar
  60. 60.
    Lai LB, Vioque A, Kirsebom et al. Unexpected diversity of RNase P, an ancient tRNA processing enzyme: challenges and prospects. FEBS Lett 2010; 584:287–296.PubMedCrossRefGoogle Scholar
  61. 61.
    Carninci P. RNA dust: where are the genes? DNA Res 2010; 17:51–59.PubMedCrossRefGoogle Scholar
  62. 62.
    Collins LJ, Penny D. The RNA infrastructure: dark matter of the eukaryotic cell? Trends Genet 2009; 25:120–128.PubMedCrossRefGoogle Scholar
  63. 63.
    Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 2009; 94:83–88.PubMedCrossRefGoogle Scholar
  64. 64.
    Slezak-Prochazka I, Durmus S, Kroesen BJ et al. MicroRNAs, macrocontrol: regulation of miRNA processing. RNA 2010; 16:1087–1095.PubMedCrossRefGoogle Scholar
  65. 65.
    Kiss AM, Jady BE, Darzacq X et al. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains. Nucl Acids Res 2002; 30:4643–4649.PubMedCrossRefGoogle Scholar
  66. 66.
    Taft RJ, Glazov EA, Lassmann T et al. Small RNAs derived from snoRNAs. RNA 2009; 15:1233–1240.PubMedCrossRefGoogle Scholar
  67. 67.
    Kishore S, Khanna A, Zhang et al. The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet 2010; 19:1153–1164.PubMedCrossRefGoogle Scholar
  68. 68.
    Irimia M, Rukov JL, Penny D et al. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing. BMC Evol Biol 2007; 7:188.PubMedCrossRefGoogle Scholar
  69. 69.
    Hutzinger R, Feederle R, Mrazek J et al. Expression and processing of a small nucleolar RNA from the Epstein-Barr virus genome. PLoS Pathog 2009; 5:e1000547.PubMedCrossRefGoogle Scholar
  70. 70.
    Chen CL, Liang D, Zhou et al. The high diversity of snoRNAs in plants: identification and comparative study of 120 snoRNA genes from Oryza sativa. Nucl Acids Res 2003; 31:2601–2613.PubMedCrossRefGoogle Scholar
  71. 71.
    Zemann A, op de Bekke A, Kiefmann M et al. Evolution of small nucleolar RNAs in nematodes. Nucl Acids Res 2006; 34:2676–2685.PubMedCrossRefGoogle Scholar
  72. 72.
    Raabe CA, Sanchez CP, Randau et al. A global view of the nonprotein-coding transcriptome in Plasmodium falciparum. Nucl Acids Res 2010; 38:608–617.PubMedCrossRefGoogle Scholar
  73. 73.
    Hertel J, Hofacker IL, Stadler PF. SnoReport: computational identification of snoRNAs with unknown targets. Bioinformatics 2008; 24:158–164.PubMedCrossRefGoogle Scholar
  74. 74.
    Gardner PP, Bateman A, Poole AM. SnoPatrol: how many snoRNA genes are there? J Biol 2010; 9:4.PubMedGoogle Scholar
  75. 75.
    Henkin TM. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Dev 2008; 22:3383–3390.PubMedCrossRefGoogle Scholar
  76. 76.
    Pantopoulos K. Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci 2004; 1012:1–13.PubMedCrossRefGoogle Scholar
  77. 77.
    Dominski Z, Marzluff WF. Formation of the 3’ end of histone mRNA: getting closer to the end. Gene 2007; 396:373–390.PubMedCrossRefGoogle Scholar
  78. 78.
    Nguyen MQ, Zhou Z, Marks CA et al. Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 2007; 131:1009–1017.PubMedCrossRefGoogle Scholar
  79. 79.
    Finn RD, Mistry J, Täte J et al. The Pfam protein families database. Nucl Acids Res 2010; 38:D211–D222.PubMedCrossRefGoogle Scholar
  80. 80.
    Gonsalvez GB, Urbinati CR, Long RM. RNA localization in yeast: moving towards a mechanism. Biol Cell 2005; 97:75–86.PubMedCrossRefGoogle Scholar
  81. 81.
    Condeelis J, Singer RH. How and why does beta-actin mRNA target? Biol Cell 2005; 97:97–110.PubMedCrossRefGoogle Scholar
  82. 82.
    Kugler JM, Lasko P. Localization, anchoring and translational control of oskar, gurken, bicoid and nanos mRNA during Drosophila oogenesis. Fly 2009; 3:15–28.PubMedCrossRefGoogle Scholar
  83. 83.
    Bermano G, Shepherd RK, Zehner ZE et al. Perinuclear mRNA localisation by vimentin 3′-untranslated region requires a 100 nucleotide sequence and intermediate filaments. FEBS Lett 2001; 497:77–81.PubMedCrossRefGoogle Scholar
  84. 84.
    Collins LJ, Chen XS. Ancestral RNA: the RNA biology of the eukaryotic ancestor. RNA Biol 2009; 6:1–8.CrossRefGoogle Scholar
  85. 85.
    Jeffares DC, Poole AM, Penny D. Relics from the RNA world. J Mol Evol 1998; 46:18–36.PubMedCrossRefGoogle Scholar
  86. 86.
    Penny D. An interpretive review of the origin of life research. Biol Philos 2005; 20:633–671.CrossRefGoogle Scholar
  87. 87.
    Poole A, Penny D, Sjöberg BM. Confounded Cytosine! Tinkering and the evolution of DNA. Nat Rev Mol Cell Biol 2001; 12:147–151.CrossRefGoogle Scholar
  88. 88.
    Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 2008; 9:267–276.PubMedCrossRefGoogle Scholar
  89. 89.
    Penny D, Hoeppner MP, Poole AM et al. An overview of the introns-first theory. J Mol Evol 2009; 69:527–540.PubMedCrossRefGoogle Scholar
  90. 90.
    White HB. Coenzymes as fossils of an earlier metabolic state. J Mol Evol 1976; 7:101–104.PubMedCrossRefGoogle Scholar
  91. 91.
    Yarus M. Life from an RNA World: The Ancestor Within. Cambridge: Harvard University Press, 2010.Google Scholar
  92. 92.
    Steitz TA, Moore PB. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 2003; 28:411–418.PubMedCrossRefGoogle Scholar
  93. 93.
    Collins LJ, Penny D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 2005; 22:1053–1066.PubMedCrossRefGoogle Scholar
  94. 94.
    Hagiwara Y, Field MJ, Nureki O et al. Editing mechanism of aminoacyl-tRNA synthetases operates by a hybrid ribozyme/protein catalyst. J Am Chem Soc 2010; 132:2751–2758.PubMedCrossRefGoogle Scholar
  95. 95.
    Rosenblad MA, Gorodkin J, Knudsen B et al. SRPDB: signal recognition particle database. Nucl Acids Res 2003; 31:363–364.PubMedCrossRefGoogle Scholar
  96. 96.
    Keeling PJ, Burger G et al. The tree of eukaryotes. Trends Ecol Evol 2005; 20:670–676.PubMedCrossRefGoogle Scholar
  97. 97.
    Poole AM, Penny D. Lateral gene transfer, some theoretical aspects. NZ BioScience 2003:32–35.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Toni Daly
    • 1
    • 3
  • X. Sylvia Chen
    • 2
  • David Penny
    • 3
  1. 1.Allan Wilson Centre of Molecular Ecology and EvolutionMassey UniversityPalmerston NorthNew Zealand
  2. 2.Department of BiochemistryUniversity of OtagoDunedinNew Zealand
  3. 3.Institute of Molecular BioSciencesMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations