Long Noncoding RNA and Epigenomics

  • Chandrasekhar Kanduri
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 722)

Abstract

Accumulating evidence over the last decade has presented us with the intriguing observation that the majority of eukaryotic genomes are pervasively transcribed to encode a complex network of small and long noncoding RNAs. Long noncoding RNAs are of particular interest, as they were once thought to be restricted to housekeeping functions and are now linked to a wide variety of biological functions related to physiology, embryology and development. Emerging evidence indicates that a subset of long noncoding RNAs mediate their biological functions by using chromatin as a substrate, to index the genetic information encoded in the genome. This chapter will discuss how noncoding RNAs and the processes underlying their transcription mediate transcriptional regulation, by epigenetically regulating the structure of chromatin in various biological contexts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mattick JS. RNA regulation: a new genetics? Nat Rev Genet 2004; 5(4):316–323.PubMedCrossRefGoogle Scholar
  2. 2.
    Kapranov P, Cheng J, Dike S et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007; 316(5830):1484–1488.PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng J, Kapranov P, Drenkow J et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 2005; 308(5725):1149–1154.PubMedCrossRefGoogle Scholar
  4. 4.
    Prasanth KV, Spector DL. Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev 2007; 21(1):11–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Mercer TR, Dinger ME, Mattick JS. Long noncoding RNAs: insights into functions. Nat Rev Genet 2009; 10(3):155–159.PubMedCrossRefGoogle Scholar
  6. 6.
    Whitehead J, Pandey GK, Kanduri C. Regulation of the mammalian epigenome by long noncoding RNAs. Biochim Biophys Acta 2008.Google Scholar
  7. 7.
    Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 2009; 10(9):637–643.PubMedCrossRefGoogle Scholar
  8. 8.
    Collins LJ, Penny D. The RNA infrastructure: dark matter of the eukaryotic cell? Trends Genet 2009; 25(3):120–128.PubMedCrossRefGoogle Scholar
  9. 9.
    Collins LJ, Chen XS. Ancestral RNA: the RNA biology of the eukaryotic ancestor. RNA Biol 2009; 6(5):495–502.PubMedCrossRefGoogle Scholar
  10. 10.
    Guttman M, Amit I, Garber M et al. Chromatin signature reveals over a thousand highly conserved large noncoding RNAs in mammals. Nature 2009; 458(7235):223–227.PubMedCrossRefGoogle Scholar
  11. 11.
    Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol 2009; 21(3):416–425.PubMedCrossRefGoogle Scholar
  12. 12.
    Seto AG, Kingston RE, Lau NC. The coming of age for Piwi proteins. Mol Cell 2007; 26(5):603–609.PubMedCrossRefGoogle Scholar
  13. 13.
    Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 2007; 318(5851):761–764.PubMedCrossRefGoogle Scholar
  14. 14.
    Kanduri C, Whitehead J, Mohammad F. The long and the short of it: RNA-directed chromatin asymmetry in mammalian X-chromosome inactivation. FEBS Lett 2009; 583(5):857–864.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee JT. Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome. Genes Dev 2009; 23(16): 1831–1842.PubMedCrossRefGoogle Scholar
  16. 16.
    Mohammad F, Mondai T, Kanduri C. Epigenetics of imprinted long noncoding RNAs. Epigenetics 2009; 4(5):277–286.PubMedCrossRefGoogle Scholar
  17. 17.
    Clemson CM, Hutchinson JN, Sara SA et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 2009; 33(6):717–726.PubMedCrossRefGoogle Scholar
  18. 18.
    Sasaki YT, Ideue T, Sano M et al. MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA 2009; 106(8):2525–2530.PubMedCrossRefGoogle Scholar
  19. 19.
    Schoeftner S, Blasco MA. A ‘higher order’ of telomere regulation: telomere heterochromatin and telomeric RNAs. EMBO J 2009; 28(16):2323–2336.PubMedCrossRefGoogle Scholar
  20. 20.
    Wong LH, Brettingham-Moore KH, Chan L et al. Centromere RNA is a key component forthe assembly of nucleoproteins at the nucleolus and centromere. Genome Res 2007; 17(8):1146–1160.PubMedCrossRefGoogle Scholar
  21. 21.
    Ferri F, Bouzinba-Segard H, Velasco G et al. Non-coding murine centromeric transcripts associate with and potentiate Aurora B kinase. Nucleic Acids Res 2009; 37(15):5071–5080.PubMedCrossRefGoogle Scholar
  22. 22.
    Willingham AT, Orth AP, Batalov S et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 2005; 309(5740): 1570–1573.PubMedCrossRefGoogle Scholar
  23. 23.
    Mondal T, Rasmussen M, Pandey GK et al. Characterization of the RNA content of chromatin. Genome Res 2010; 20:899–907.PubMedCrossRefGoogle Scholar
  24. 24.
    Kanduri C. Functional insights into long antisense noncoding RNA Kcnq1ot1 mediated bidirectional silencing. RNA Biol 2008; 5(4):208–211.PubMedGoogle Scholar
  25. 25.
    Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009; 23(13): 1494–1504.PubMedCrossRefGoogle Scholar
  26. 26.
    Rinn JL, Kertesz M, Wang JK et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007; 129(7): 1311–1323.PubMedCrossRefGoogle Scholar
  27. 27.
    Katayama S, Tomaru Y, Kasukawa T et al. Antisense transcription in the mammalian transcriptome. Science 2005; 309(5740):1564–1566.PubMedCrossRefGoogle Scholar
  28. 28.
    Yu W, Gius D, Onyango P et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 2008; 451(7175):202–206.PubMedCrossRefGoogle Scholar
  29. 29.
    Houseley J, Rubbi L, Grunstein M et al. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell 2008; 32(5):685–695.PubMedCrossRefGoogle Scholar
  30. 30.
    Ligtenberg MJ, Kuiper RP, Chan TL et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′exons of TACSTD1. Nat Genet 2009;41(1):112–117.PubMedCrossRefGoogle Scholar
  31. 31.
    Tufarelli C, Stanley JA, Garrick D et al. Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 2003; 34(2):157–165.PubMedCrossRefGoogle Scholar
  32. 32.
    Hekimoglu B, Ringrose L. Non-coding RNAs in polycomb/trithorax regulation. RNA Biol 2009; 6(2):129–137.PubMedCrossRefGoogle Scholar
  33. 33.
    Hirota K, Miyoshi T, Kugou K et al. Stepwise chromatin remodelling by a cascade of transcription initiation of noncoding RNAs. Nature 2008; 456(7218): 130–134.PubMedCrossRefGoogle Scholar
  34. 34.
    Morris KV, Santoso S, Turner AM et al. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 2008; 4(1 l):e1000258.PubMedCrossRefGoogle Scholar
  35. 35.
    Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Development 2007; 134(2):223–232.PubMedCrossRefGoogle Scholar
  36. 36.
    Schuettengruber B, Cavalli G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development 2009; 136(21):3531–3542.PubMedCrossRefGoogle Scholar
  37. 37.
    Sessa L, Breiling A, Lavorgna G et al. Noncoding RNA synthesis and loss of Polycomb group repression accompanies the colinear activation of the human HOXA cluster. RNA 2007; 13(2):223–239.PubMedCrossRefGoogle Scholar
  38. 38.
    Sanchez-Elsner T, Gou D, Kremmer E et al. Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 2006; 311(5764):1118–1123.PubMedCrossRefGoogle Scholar
  39. 39.
    Petruk S, Sedkov Y, Riley KM et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 2006; 127(6): 1209–1221.PubMedCrossRefGoogle Scholar
  40. 40.
    Dinger ME, Amaral PP, Mercer TR et al. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res 2008; 18(9): 1433–1445.PubMedCrossRefGoogle Scholar
  41. 41.
    Kelley RL, Kuroda MI. Noncoding RNA genes in dosage compensation and imprinting. Cell 2000; 103(1):9–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Hallacli E, Akhtar A. X chromosomal regulation in flies: when less is more. Chromosome Res 2009; 17(5):603–619.PubMedCrossRefGoogle Scholar
  43. 43.
    Heard E, Clerc P, Avner P. X-chromosome inactivation in mammals. Annu Rev Genet 1997; 31:571–610.PubMedCrossRefGoogle Scholar
  44. 44.
    Ilik I, Akhtar A. roX RNAs: noncoding regulators of the male X chromosome in flies. RNA Biol 2009; 6(2):113–121.PubMedCrossRefGoogle Scholar
  45. 45.
    Wutz A, Gribnau J. X inactivation Xplained. Curr Opin Genet Dev 2007; 17(5):387–393.PubMedCrossRefGoogle Scholar
  46. 46.
    Brockdorff N, Ashworth A, Kay GF et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 1992; 71:515–526.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee JT, Davidow LS, Warshawsky D. Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 1999; 21(4):400–404.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee JT. Regulation of X-chromosome counting by Tsix and Xite sequences. Science 2005; 309(5735):768–771.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhao J, Sun BK, Erwin JA et al. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 2008; 322(5902):750–756.PubMedCrossRefGoogle Scholar
  50. 50.
    Cohen DE, Davidow LS, Erwin JA et al. The DXPas34 repeat regulates random and imprinted X inactivation. Dev Cell 2007; 12(1):57–71.PubMedCrossRefGoogle Scholar
  51. 51.
    Vigneau S, Augui S, Navarro P et al. An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. Proc Natl Acad Sci USA 2006; 103(19):7390–7395.PubMedCrossRefGoogle Scholar
  52. 52.
    Ogawa Y, Sun BK, Lee JT. Intersection of the RNA interference and X-inactivation pathways. Science 2008; 320(5881):1336–1341.PubMedCrossRefGoogle Scholar
  53. 53.
    Rougeulle C, Avner P. Controlling X-inactivation in mammals: what does the centre hold? Semin Cell Dev Biol 2003; 14(6):331–340.PubMedCrossRefGoogle Scholar
  54. 54.
    Kalantry S, Purushothaman S, Bowen RB et al. Evidence of Xist RNA-independent initiation of mouse imprinted X-chromosome inactivation. Nature 2009; 460(7255):647–651.PubMedGoogle Scholar
  55. 55.
    Navarro P, Chambers I, Karwacki-Neisius V et al. Molecular coupling of Xist regulation and pluripotency. Science 2008; 321(5896):1693–1695.PubMedCrossRefGoogle Scholar
  56. 56.
    Navarro P, Pichard S, Ciaudo C et al. Tsixtranscription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev 2005; 19(12):1474–1484.PubMedCrossRefGoogle Scholar
  57. 57.
    Navarro P, Chantalat S, Foglio M et al. A role for noncoding Tsix transcription in partitioning chromatin domains within the mouse X-inactivation centre. Epigenetics Chromatin 2009; 2(1):8.PubMedCrossRefGoogle Scholar
  58. 58.
    Monkhorst K, Jonkers I, Rentmeester E et al. X inactivation counting and choice is a stochastic process: evidence for involvement of an X-linked activator. Cell 2008; 132(3):410–421.PubMedCrossRefGoogle Scholar
  59. 59.
    Donohoe ME, Silva SS, Pinter SF et al. The pluripotency factor Oct4 interacts with Ctcf and also controls X-chromosome pairing and counting. Nature 2009; 460(7251):128–132.PubMedCrossRefGoogle Scholar
  60. 60.
    XuN, Donohoe ME, Silva SS et al. Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet 2007; 39(11): 1390–1396.CrossRefGoogle Scholar
  61. 61.
    Augui S, Filion GJ, Huart S et al. Sensing X chromosome pairs before X inactivation via anovel X-pairing region of the Xic. Science 2007; 318(5856):1632–1636.PubMedCrossRefGoogle Scholar
  62. 62.
    Sun BK, Deaton AM, Lee JT. A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. Mol Cell 2006; 21(5):617–628.PubMedCrossRefGoogle Scholar
  63. 63.
    Gilfillan GD, Dahlsveen IK, Becker PB. Lifting a chromosome: dosage compensation in Drosophila melanogaster. FEBS Lett 2004; 567(1):8–14.PubMedCrossRefGoogle Scholar
  64. 64.
    Franke A, Baker BS. The roxl and rox2 RNAs are essential components of the compensasome, which mediates dosage compensation in Drosophila. Mol Cell 1999; 4(1): 117–122.PubMedCrossRefGoogle Scholar
  65. 65.
    Alekseyenko AA, Peng S, Larschan E et al. A sequence motif within chromatin entry sites directs MSL establishment on the Drosophila X chromosome. Cell 2008; 134(4):599–609.PubMedCrossRefGoogle Scholar
  66. 66.
    Kind J, Vaquerizas JM, Gebhardt P et al. Genome-wide analysis reveals MOF as a key regulator of dosage compensation and gene expression in Drosophila. Cell 2008; 133(5):813–828.PubMedCrossRefGoogle Scholar
  67. 67.
    Lin CH, Jackson AL, Guo J et al. Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J 2009; 28(20):3157–3170.PubMedCrossRefGoogle Scholar
  68. 68.
    Xu N, Papagiannakopoulos T, Pan G et al. MicroRNA-145 regulates OCT4, SOX2 and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009; 137(4):647–658.PubMedCrossRefGoogle Scholar
  69. 69.
    Sheik Mohamed J, Gaughwin PM, Lim B et al. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA 2009.Google Scholar
  70. 70.
    Peters J, Robson JE. Imprinted noncoding RNAs. Mamm Genome 2008; 19(7–8):493–502.PubMedCrossRefGoogle Scholar
  71. 71.
    Royo H, Cavaille J. Non-coding RNAs in imprinted gene clusters. Biol Cell 2008; 100(3): 149–166.PubMedCrossRefGoogle Scholar
  72. 72.
    Lewis A, Reik W. How imprinting centres work. Cytogenet Genome Res 2006; 113(1–4):81–89.PubMedCrossRefGoogle Scholar
  73. 73.
    Kanduri C, Pant V, Loukinov D et al. Functional interaction of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive. Curr Biol 2000; 10:853–856.PubMedCrossRefGoogle Scholar
  74. 74.
    Kanduri C, Holmgren C, Franklin G et al. The 5′-flank of the murine H19 gene in an unusual chromatin conformation unidirectionally blocks enhancer-promoter communication. Curr Biol 2000; 10:449–457.PubMedCrossRefGoogle Scholar
  75. 75.
    Pandey RR, Mondal T, Mohammad F et al. Kcnq 1 ot 1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell 2008; 32(2):232–246.PubMedCrossRefGoogle Scholar
  76. 76.
    Pandey RR, Ceribelli M, Singh PB et al. NF-Y regulates the antisense promoter, bidirectional silencing and differential epigenetic marks of the Kcnq1 imprinting control region. J Biol Chem 2004; 279(50):52685–52693.PubMedCrossRefGoogle Scholar
  77. 77.
    Thakur N, Tiwari VK, Thomassin H et al. An antisense RNAregulates the bidirectional silencing property of the kcnq1 imprinting control region. Mol Cell Biol 2004; 24(18):7855–7862.PubMedCrossRefGoogle Scholar
  78. 78.
    Kanduri C, Thakur N, Pandey RR. The length of the transcript encoded from the Kcnq1ot1 antisense promoter determines the degree of silencing. EMBO J 2006; 25(10):2096–2106.PubMedCrossRefGoogle Scholar
  79. 79.
    Mancini-Dinardo D, Steele SJ, Levorse JM et al. Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. Genes Dev 2006; 20(10): 1268–1282.PubMedCrossRefGoogle Scholar
  80. 80.
    Shin JY, Fitzpatrick GV, Higgins MJ. Two distinct mechanisms of silencing by the KvDMR1 imprinting control region. EMBO J 2008; 27(1): 168–178.PubMedCrossRefGoogle Scholar
  81. 81.
    Koerner MV, Pauler FM, Huang R et al. The function of noncoding RNAs in genomic imprinting. Development 2009; 136(11): 1771–1783.PubMedCrossRefGoogle Scholar
  82. 82.
    Sleutels F, Zwart R, Barlow DP. The noncoding Air RNA is required for silencing autosomal imprinted genes. Nature 2002; 415(6873):810–813.PubMedGoogle Scholar
  83. 83.
    Nagano T, Mitchell JA, Sanz LA et al. The Air Noncoding RNA Epigenetically Silences Transcription by Targeting G9a to Chromatin. Science. 2008.Google Scholar
  84. 84.
    Williamson CM, Ball ST, Nottingham WT et al. A cis-acting control region is required exclusively for the tissue-specific imprinting of Gnas. Nat Genet 2004; 36(8): 894–899.PubMedCrossRefGoogle Scholar
  85. 85.
    Landers M, Bancescu DL, Le Meur E et al. Regulation of the large (approximately 1000 kb) imprinted murine Ube3a antisense transcript by alternative exons upstream of Snurf/Snrpn. Nucleic Acids Res 2004; 32(11):3480–3492. Print 2004.PubMedCrossRefGoogle Scholar
  86. 86.
    Vitali P, Royo H, Marty V et al. Long nuclear-retained noncoding RNAs and allele-specific higher-order chromatin organization at imprinted snoRNA gene arrays. J Cell Sci 123(Pt 1):70–83.Google Scholar
  87. 87.
    Lin SP, Youngson N, Takada S et al. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12. Nat Genet 2003; 35(1):97–102.PubMedCrossRefGoogle Scholar
  88. 88.
    Davis E, Caiment F, Tordoir X et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 2005; 15(8):743–749.PubMedCrossRefGoogle Scholar
  89. 89.
    Bernstein E, Allis CD. RNA meets chromatin. Genes Dev 2005; 19(14):1635–1655.PubMedCrossRefGoogle Scholar
  90. 90.
    Pezer Z, Ugarkovic D. Role of noncoding RNA and heterochromatin in aneuploidy and cancer. Semin Cancer Biol 2008; 18(2): 123–130.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen ES, Zhang K, Nicolas E et al. Cell cycle control of centromeric repeat transcription and heterochromatin assembly. Nature 2008; 451(7179):734–737.PubMedCrossRefGoogle Scholar
  92. 92.
    Bouzinba-Segard H, Guais A, Francastel C. Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 2006; 103(23):8709–8714.PubMedCrossRefGoogle Scholar
  93. 93.
    Djupedal I, Ekwall K. Epigenetics: heterochromatin meets RNAi. Cell Res 2009; 19(3):282–295.PubMedCrossRefGoogle Scholar
  94. 94.
    Motamedi MR, Verdel A, Colmenares SU et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell 2004; 119(6):789–802.PubMedCrossRefGoogle Scholar
  95. 95.
    Verdel A, Jia S, Gerber S et al. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 2004; 303(5658):672–676.PubMedCrossRefGoogle Scholar
  96. 96.
    Kagansky A, Folco HD, Almeida R et al. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science 2009; 324(5935): 1716–1719.PubMedCrossRefGoogle Scholar
  97. 97.
    Fukagawa T, Nogami M, Yoshikawa M et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 2004; 6(8):784–791.PubMedCrossRefGoogle Scholar
  98. 98.
    Sinkkonen L, Hugenschmidt T, Berninger P et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat Struct Mol Biol 2008; 15(3):259–267.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chandrasekhar Kanduri
    • 1
  1. 1.Department of Genetics and PathologyUppsala UniversityUppsalaSweden

Personalised recommendations