Thermoelectric Effects in Current Induced Crystallization of Silicon Microstructures

  • Gokhan Bakan
  • Niaz Khan
  • Helena Silva
  • Ali Gokirmak
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


We have observed melting of nanocrystalline silicon microwires self-heated through single high-amplitude microsecond voltage pulses which leads to growth from melt upon resolidification. The resolidified regions form two single-crystal domains for wires with sub-micrometer widths. The current densities (J) involved in this process are ~ 1-10 MA/cm2 for suspended wires, and ~ 10-100 MA/cm2 for wires on oxide. These extremely high current densities and the resulting high temperatures (~ 1700 K) and temperature gradients (~ 1 K/nm) along the microwires give rise to strong thermoelectric effects. The thermoelectric effects are characterized through capture and analysis of light emission from the self-heated wires biased with lower magnitude AC voltages (J < 5 MA/cm2). The hottest spot on the wires consistently appears closer to the lower potential end for n-type, and the higher potential end for p-type microwires. Experimental light emission profiles are used to verify the linear thermoelectric models and material parameters used for simulations. Good agreement between these experimental and simulated profiles indicates that the linear models can be used to predict the thermal profiles for current induced crystallization of microstructures. However, the linear models are expected to be insufficient to fully explain the thermoelectric processes for higher current densities and stronger thermal gradients that are generated by high-amplitude short duration pulses.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Wagner, H. Gleskova, I. C. Cheng and M. Wu, "Silicon for thin-film transistors," Thin Solid Films, vol. 430, pp. 15–19, 2003.CrossRefGoogle Scholar
  2. 2.
    R. H. Reuss, B. R. Chalama, A. Moussessian, M. G. Kane, A. Kumar, D. C. Zhang, J. A. Rogers, M. Hatalis, D. Temple, G. Moddel, B. J. Eliasson, M. J. Estes, J. Kunze, E. S. Handy, E. S. Harmon, D. B. Salzman, J. M. Woodall, M. A. Alam, J. Y. Murthy, S. C. Jacobsen, M. Olivier, D. Markus, P. M. Campbell and E. Snow, "Macroelectronics: Perspectives on technology and applications," Proc IEEE, vol. 93, pp. 1239–1256, 2005.CrossRefGoogle Scholar
  3. 3.
    T. Makino and H. Nakamura, "Electrical and optical properties of boron doped amorphous silicon films prepared by CVD," Jpn.J.Appl.Phys., vol. 17, pp. 1897–1898, 1978.Google Scholar
  4. 4.
    R. S. Wagner and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., vol. 4, pp. 89, 1964.CrossRefGoogle Scholar
  5. 5.
    T. I. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays. Norwell, MA: Kluwer Academics Publishers, 1998, pp. 378.Google Scholar
  6. 6.
    Y. C. Wu, T. C. Chang, P. T. Liu, Y. C. Wu, C. W. Chou, C. H. Tu, J. C. Lou and C. Y. Chang, "Mobility enhancement of polycrystalline-Si thin-film transistors using nanowire channels by pattern-dependent metal-induced lateral crystallization," Appl. Phys. Lett., vol. 87, pp. 143504, 2005.CrossRefGoogle Scholar
  7. 7.
    C. J. Su, H. C. Lin and T. Y. Huang, "High-performance TFTs with Si nanowire channels enhanced by metal-induced lateral crystallization," Electron Device Letters, IEEE, vol. 27, pp. 582–584, 2006.Google Scholar
  8. 8.
    J. Y. Kim, J. W. Han, J. M. Han, Y. H. Kim, B. Y. Oh, B. Y. Kim, S. K. Lee and D. S. Seo, "Nickel oxide-induced crystallization of silicon for use in thin film transistors with a SiN diffusion filter," Appl. Phys. Lett., vol. 92, pp. 143501, 2008.CrossRefGoogle Scholar
  9. 9.
    R. S. Sposili and J. S. Im, "Sequential lateral solidification of thin silicon films on SiO," Appl. Phys. Lett., vol. 69, pp. 2864, 1996.CrossRefGoogle Scholar
  10. 10.
    J. S. Im, R. S. Sposili and M. A. Crowder, "Single-crystal Si films for thin-film transistor devices," Appl. Phys. Lett., vol. 70, pp. 3434, 1997.CrossRefGoogle Scholar
  11. 11.
    T. Sameshima, N. Andoh and H. Takahashi, "Rapid crystallization of silicon films using electrical-current-induced joule heating," J. Appl. Phys., vol. 89, pp. 5362, 2001.CrossRefGoogle Scholar
  12. 12.
    N. Andoh, T. Sameshima and K. Kitahara, "Crystallization of silicon films by rapid joule heating method," Thin Solid Films, vol. 487, pp. 118–121, 2005.CrossRefGoogle Scholar
  13. 13.
    G. Bakan, A. Cywar, H. Silva and A. Gokirmak, "Melting and crystallization of nanocrystalline silicon microwires through rapid self-heating," Appl. Phys. Lett., vol. 94, pp. 251910, 2009.Google Scholar
  14. 14.
    G. Bakan, K. Cil, A. Cywar, H. Silva and A. Gokirmak, "Measurements of liquid silicon resistivity on silicon microwires," in Mater. Res. Soc. Symp. Proc. Spring 2009, 2009, pp. AA06-06.Google Scholar
  15. 15.
    V. M. Glazov, S. N. Chizhevskaya and N. N. Glagoleva, Liquid Semiconductors. N.Y.: Plenum Press, 1969, pp. 362.Google Scholar
  16. 16.
    H. S. Schnyders and J. B. Van Zytveld, "Electrical resistivity and thermopower of liquid Ge and Si," Journal of Physics: Condensed Matter, vol. 8, pp. 10875–10883, 1996.CrossRefGoogle Scholar
  17. 17.
    H. Sasaki, A. Ikari, K. Terashima and S. Kimura, "Temperature Dependence of the Electrical Resistivity of Molten Silicon," Jpn.J.Appl.Phys, vol. 34, pp. 3426–3431, 1995.Google Scholar
  18. 18.
    N. E. Williams, E. Carpena, K. Cil, H. Silva and A. Gokirmak, "Temperature Dependent Electrical Characterization and Crystallization of Nanocrystalline Silicon," Mat. Res. Soc. Spring Meeting, vol. A17.9, 2010.Google Scholar
  19. 19.
    G. Bakan, N. Khan, A. Cywar, K. Cil, M. Akbulut, A. Gokirmak and H. Silva, "Self-heating of silicon microwires: crystallization and thermoelectric effects," Journal of Material Research (In press), 2010.Google Scholar
  20. 20.
    D. M. Rowe, Thermoelectrics Handbook:Macro to Nano. DRC, 2006Google Scholar
  21. 21.
    D. K. C. MacDonald, Thermoelectricity: An Introduction to the Principles. Mineola, N.Y.: Dover Publications, Inc., 2006, pp. 133.Google Scholar
  22. 22.
    C. H. Mastrangelo, J. H. J. Yeh and R. S. Muller, "Electrical and optical characteristics of vacuum-sealed polysiliconmicrolamps," IEEE Trans. Electron Devices, vol. 39, pp. 1363–1375, 1992.CrossRefGoogle Scholar
  23. 23.
    O. Englander, D. Christensen and L. Lin, "Local synthesis of silicon nanowires and carbon nanotubes on microbridges," Appl. Phys. Lett., vol. 82, pp. 4797, 2003.CrossRefGoogle Scholar
  24. 24.
    A. Jungen, C. Stampfer and C. Hierold, "Thermography on a suspended microbridge using confocal Raman scattering," Appl. Phys. Lett., vol. 88, pp. 191901, 05/08. 2006.Google Scholar
  25. 25.
    D. K. Schroder, Semiconductor Material and Device Characterization. Wiley-interscience, 2006Google Scholar
  26. 26.
    D. T. Castro, L. Goux, G. A. M. Hurkx, K. Attenborough, R. Delhougne, J. Lisoni, F. J. Jedema, M. A. A. i. '. Zandt, R. A. M. Wolters, D. J. Gravesteijn, M. A. Verheijen, M. Kaise, R. G. R. Weemaes and D. J. Wouters, "Evidence of the thermoelectric thomson effect and influence on the program conditions and cell optimization in phase-change memory cells," in IEEE International Electron Devices Meeting, 2007. IEDM 2007, 2007, pp. 315–318.Google Scholar
  27. 27.
    COMSOL-Multiphysics ModelingGoogle Scholar
  28. 28.
    E. M. Lifshitz, L. D. Landau and L. P. Pitaevskii, Electrodynamics of Continuous Media.,2nd ed.MA: Pergamon Press, 1984, pp. 455.Google Scholar
  29. 29.
    A. A. Geisberger, N. Sarkar, M. Ellis and G. D. Skidmore, "Electrothermal properties and modeling of polysilicon microthermal actuators," J of Microelectromechanical Systems, vol. 12, pp. 513–523, 2003.CrossRefGoogle Scholar
  30. 30.
    M. Von Arx, O. Paul and H. Baltes, "Test structures to measure the Seebeck coefficient of CMOS ICpolysilicon," IEEE Trans. Semicond. Manuf., vol. 10, pp. 201–208, 1997.CrossRefGoogle Scholar
  31. 31.
    W. Fulkerson, J. P. Moore, R. K. Williams, R. S. Graves and D. L. McElroy, "Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300° K," Physical Review, vol. 167, pp. 765–782, 1968.CrossRefGoogle Scholar
  32. 32.
    C. Ong, E. Sin and H. Tan, "Heat-flow calculation of pulsed excimer ultraviolet laser's melting of amorphous and crystalline silicon surfaces," Journal of the Optical Society of America B, vol. 3, pp. 812–814, 1986.CrossRefGoogle Scholar
  33. 33.
    T. Sato, "Spectral emissivity of silicon," Japanese Journal Op Applied Physics Vol, vol. 6, 1967.Google Scholar
  34. 34.
    D. G. Brandon and W. D. Kaplan, Microstructural Characterization of Materials.,2nd ed.WILEY, 1999, pp. 536.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Gokhan Bakan
    • 1
  • Niaz Khan
    • 1
  • Helena Silva
    • 1
  • Ali Gokirmak
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations