Biosensors for the Detection of E. coli O157:H7 in Source and Finished Drinking Water

Chapter
Part of the Protecting Critical Infrastructure book series (PCIN, volume 2)

Abstract

Current research to develop biosensors for the detection of pathogens and indicator organisms in source and finished water is motivated by their potential for rapid analysis compared to laborious and time-consuming cultural methods. There is great diversity in the biosensors being developed to detect E. coli O157:H7, both immunosensors that capture and detect whole cells and genosensors that capture and detect target nucleic acids. All biosensor designs must address both sensitivity and pathogen specificity, in order to minimize both false positives and false negatives. Improvements in sensitivity have resulted from the use of new labeling technologies, especially liposomes, which can encapsulate a large number of fluorescent dye molecules, and quantum dots, which emit a much brighter signal that conventional fluorescent dyes. Some biosensors have been designed to detect viable pathogens, including genosensors that detect transcription of a heat shock gene exclusively in viable cells. An inherent limitation of biosensors is the small capture surface in relation to the large volumes of water that must be sampled in order to assess the public health risk. This necessitates effective concentration methods; however, few researchers have specified how samples would be concentrated. Instead, most biosensors have only been tested in the laboratory using small volumes (<1 mL) of buffer seeded with different concentrations of E. coli O157:H7. Field testing in pilot-scale treatment plants with blind seeding is recommended in order to validate biosensors for the water industry.

References

  1. Abdel-Hamid I, Ivnitski D, Atansaov P, Wilkins E (1999) Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosensors and Bioelectronics 14:309–316CrossRefGoogle Scholar
  2. Baeumner A J, Cohen R J, Miksic V, Min J (2003) RNA biosensor for the rapid detection of viable Escherichia coli. Biosensors and Bioelectronics 18:405–413CrossRefGoogle Scholar
  3. Baeumner A J, Pretz J, Fang S (2004) A universal nucleic acid sequence biosensor with nanomolar detection limits. Analytical Chemistry 76:888–894CrossRefGoogle Scholar
  4. Brewster J D, Mazenko R S (1998) Filtration capture and immunoelectrochemical detection for rapid assay of Escherichia coli O157:H7. Journal of Immunological Methods 211:1–8CrossRefGoogle Scholar
  5. Call D R, Brockman F J, Chandler D P (2001) Detecting and genotyping Escherichia coli O157:H7 using multiplexed PCR and nucleic acid microarrays. International Journal of Food Microbiology 67:71–80CrossRefGoogle Scholar
  6. Campbell G A, Mutharasan R (2007) A method of measuring Escherichia coli O157:H7 at 1 cell/mL in 1 liter sample using antibody functionalized piezoelectric-excited millimeter-sized cantilever sensor. Environmental Science and Technology 41:1668–1674CrossRefGoogle Scholar
  7. Chen C-S, Yao J, Durst R A (2006) Liposome encapsulation of fluorescent nanoparticles: quantum dots and silica nanoparticles. Journal of Nanoparticle Research 8:1033–1038CrossRefGoogle Scholar
  8. Deisingh A K, Thompson M (2004) Strategies for the detection of Escherichia coli O157:H7 in foods. Journal of Applied Microbiology 96:419–429CrossRefGoogle Scholar
  9. Derzon M, Hopkins M, Galambos P, Achyuthan K, Bourdon C, Brener I, James C, McClain J, Peterson D, Rahimian K, Timlin J, Cullor J, Kaminski M, Peck V, Spink E, Yun C, Ludwig G (2009) Timely multi-threat biological, chemical and nuclide detection: a platform, a metric, key results. International Journal of Technology Transfer and Commercialisation 7: 413–435CrossRefGoogle Scholar
  10. Dunbar S, Vander Zee C A, Oliver K G, Karem K L, Jacobson J W (2003) Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP™ system. Journal of Microbiological Methods 53:245–252CrossRefGoogle Scholar
  11. Edwards K A, Baeumner A J (2006) Liposomes in analyses. Talanta 68:1421–1431CrossRefGoogle Scholar
  12. Eum N-S, Yeom S-H, Kwon D-H, Kim H-R, Kang S-W (2010) Enhancement of sensitivity using gold nanorods – antibody conjugator for detection of E. coli O157:H7. Sensors and Actuators B 143:784–788CrossRefGoogle Scholar
  13. Farabullini F, Lucarelli F, Palchetti I, Marrazza G, Mascini M (2007) Disposable electrochemical genosensor for the simultaneous analysis of different food contaminants. Biosensors and Bioelectronics 22:1544–1549CrossRefGoogle Scholar
  14. Gehring A G, Irwin P L, Reed S A, Tu S-I, Andreotti P E, Akhavan-Tafti H, Handley R S (2004) Enyzme-linked immunomagnetic chemiluminescent detection of Escherichia coli O157:H7. Journal of Immunological Methods 293:97–106CrossRefGoogle Scholar
  15. Goldman E R, Medintz I L, Mattoussi H (2006) Luminescent quantum dots in immunoassays. Analytical and Bioanalytical Chemistry 384:560–563CrossRefGoogle Scholar
  16. Hahn M A, Tabb J S, Krauss T D (2005) Detection of single bacterial pathogens with semiconductor quantum dots. Analytical Chemistry 77:4861–4869CrossRefGoogle Scholar
  17. Ho J A, Hsu H-W, Huang M-R (2004) Liposome-based microcapillary immunosensor for detection of Escherichia coli O157:H7. Analytical Biochemistry 330:342–349CrossRefGoogle Scholar
  18. Huang X J, Zhang Y Y (2006) Electrical determination of E. coli O157:H7 using tin-oxide nanowire coupled with microfluidic chip. IEEE Sensors Journal 6:1376–1377CrossRefGoogle Scholar
  19. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosensors and Bioelectronics 14:599–624CrossRefGoogle Scholar
  20. Johnson-White B, Lin B C, Ligler F S (2007) Combination of immunosensor detection with viability testing and confirmation using the polymerase chain reaction and culture. Analytical Chemistry 79:140–146CrossRefGoogle Scholar
  21. LaGier M, Scholin C, Fell J, Wang J, Goodwin K (2005) An electrochemical RNA hybridization assay for detection of the fecal indicator bacterium Escherichia coli. Marine Pollution Bulletin 50:1251–1261CrossRefGoogle Scholar
  22. Lazacka O, Del Campo F J, Munoz F X (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosensors and Bioelectronics 22:1205–1217CrossRefGoogle Scholar
  23. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O’Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzyme and Microbial Technology 32:3–13CrossRefGoogle Scholar
  24. Liao W-C, Ho J A (2009) Attomole DNA electrochemical sensor for the detection of Escherichia coli O157. Analytical Chemistry 81:2470–2476CrossRefGoogle Scholar
  25. Ligler F S, Sapsford K, Golden J, Schriver-Lake L, Taitt C, Dyer M, Barone S, Myatt C J (2007) The array biosensor: portable, automated systems. Analytical Sciences 23:5–10CrossRefGoogle Scholar
  26. Lim C T, Zhang Y (2007) Bead-based microfluidic immunoassays: the next generation. Biosensors and Bioelectronics 22:1197–2104CrossRefGoogle Scholar
  27. Lim D V, Simpson J M, Kearns E A, Kramer M F (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinical Microbiology Reviews 18: 583–607CrossRefGoogle Scholar
  28. Lu Q, Lin H, Ge S, Luo S, Cai Q, Grimes C A (2009) Wireless, remote-query, and high sensitivity Escherichia coli O157:H7 biosensor based on the recognition action of concanavalin A. Analytical Chemistry 81:5846–5850CrossRefGoogle Scholar
  29. Mao X, Yang L, Su X-L, Li Y (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosensors and Bioelectronics 21:1178–1185CrossRefGoogle Scholar
  30. Meeusen C A, Alocilja E C, Osburn W N (2005) Detection of E. coli O157:H7 using a miniaturized surface plasmon resonance biosensor. Transactions of the ASAE 48:2409–2416Google Scholar
  31. Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Analytical Science 20:1113–1126CrossRefGoogle Scholar
  32. Morales-Morales H A, Vidal G, Olszewski J, Rock C M, Dasgupta D, Oshima K H, Smit G B (2003) Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Applied and Environmental Microbiology 67:4098–4102CrossRefGoogle Scholar
  33. Ngundi M M, Kulagina N V, Anderson G P, Taitt C R (2006) Non-antibody-based recognition: alternative molecules for detection of pathogens. Expert Reviews in Proteomics 3: 511–524CrossRefGoogle Scholar
  34. Noble R T, Weisberg S B (2007) A review of technologies for rapid detection of bacteria in recreational waters. Journal of Water and Health 03.4:381–392Google Scholar
  35. Nocker A, Burr M, Camper A K (2009) Synthesis document on molecular techniques for the drinking water industry. Water Research Foundation, Denver, CO, USAGoogle Scholar
  36. Poitras C, Tufenkji N (2009) A QCM-D-based biosensor for E. coli O157:H7 highlighting the relevance of the dissipation slope as a transduction signal. Biosensors and Bioelectronics 24:2137–2142CrossRefGoogle Scholar
  37. Radke S M, Alocilja E C (2005) A high density microelectrode array biosensor for detection of E. coli O157:H7. Biosensors and Bioelectronics 20:1662–1667CrossRefGoogle Scholar
  38. Rasooly A, Herold K E (2006) Biosensors for the analysis of food- and waterborne pathogens and their toxins. Journal of the AOAC International 89:873–883Google Scholar
  39. Reidt U, Chauhan L, Muller G, Molz R, Lindner P, Wolf H, Friedberger A (2008) Reproducible filtration of bacteria with micromechanical filters. Journal of Rapid Methods and Automation in Microbiology 16:337–350CrossRefGoogle Scholar
  40. Rijal K, Leung A, Shankar P M, Mutharasan R (2005) Detection of pathogen Escherichia coli O157:H7 at 70 cells/mL using antibody-immobilized biconical tapered fiber sensors. Biosensors and Bioelectronics 21:871–880CrossRefGoogle Scholar
  41. Rose J B, Grimes D J (2001) Reevaluation of microbial water quality: powerful tools for detection and risk assessment. American Academy of Microbiology. Washington, DCGoogle Scholar
  42. Sapsford K E, Ngundi M M, Moore M H, Lassman M E, Shriver-Lake L C, Taitt C R, Ligler F S (2006) Rapid detection of foodborne contaminants using Array Biosensor. Sensors and Actuators B 113:599–607CrossRefGoogle Scholar
  43. Song J M, Kwon H T (2009) Photodiode array on-chip biosensor for the detection of E. coli O157:H7 pathogenic bacteria. Methods in Molecular Biology: Biosensors and Bioprotection 503:325–335CrossRefGoogle Scholar
  44. Straub T M, Dockendorff B P, Quinonez-Diaz M D, Valdez C O, Shutthanandan J I, Tarasevich B J, Grate J W, Bruckner-Lea C J (2005) Automated methods for multiplexed pathogen detection. Journal of Microbiological Methods 62:303–316CrossRefGoogle Scholar
  45. Su X-L, Li Y (2004) Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Analytical Chemistry 76:4806–4810CrossRefGoogle Scholar
  46. Su X-L, Li Y (2005) Surface plasmon resonance and quartz crystal microbalance immunosensors for detection of Escherichia coli O157:H7. Transactions of the ASAE 48:405–413Google Scholar
  47. Subramanian A, Irudayaraj J, Ryan T (2006) A mixed self-assembled monolayer-based surface plasmon immunosensor for detection of E. coli O157:H7. Biosensors and Bioelectronics 21:998–1006CrossRefGoogle Scholar
  48. Taylor A D, Yu Q, Chen S, Homola J, Jiang S (2005) Comparison of E. coli O157:H7 preparations methods used for detection with surface plasmon resonance sensor. Sensors and Actuators B 107:202–208CrossRefGoogle Scholar
  49. Teles F R R, Fonseca L P (2008) Trends in DNA biosensors. Talanta 77:606–623CrossRefGoogle Scholar
  50. Tims T B, Lim D V (2003) Confirmation of viable E. coli O157:H7 by enrichment and PCR after rapid biosensor detection. Journal of Microbiological Methods 55:141–147CrossRefGoogle Scholar
  51. Tu S-I, Uknalis J, Yamashoji S, Gehring A, Irwin P (2005) Luminescent methods to detect viable and total Escherichia coli O157:H7 in ground beef. Journal of Rapid Methods and Automation in Microbiology 13:57–70CrossRefGoogle Scholar
  52. US Food and Drug Administration (2009) Bad bug book: foodborne pathogenic microorganisms and natural toxins handbook. Rockville, MDGoogle Scholar
  53. Wang L, Liu Q, Hu Z, Zhang Y, Wu C, Yang Mo, Wang P (2009) A novel electrochemical biosensor based on dynamic polymerase-extending hybridization for E. coli O157:H7 detection. Talanta 78:647–652CrossRefGoogle Scholar
  54. Waswa J, Irudayaraj J, DebRoy C (2007) Direct detection of E. coli O157:H7 in selected food systems by a surface plasmon resonance biosensor. LWT Food Science and Technology 40:187–192CrossRefGoogle Scholar
  55. Yacoub-George E, Hell W, Meixner L, Wenninger F, Bock K, Lindner P, Wolf H, Kloth J, Feller K A (2007) Automated 10-channel capillary chip immunodetector for biological agents detection. Biosensors and Bioelectronics 22:1368–1375CrossRefGoogle Scholar
  56. Yang L, Li Y (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescent labels. Analyst 131:394–401CrossRefGoogle Scholar
  57. Zhao W, Yao S, Hsing I-M (2006) A microsystem compatible strategy for viable Escherichia coli detection. Biosensors and Bioelectronics 21:1163–1170CrossRefGoogle Scholar
  58. Zhu P, Shelton D R, Karns J S, Sundaram A, Li S, Amstutz P, Tang C-M (2005) Detection of water-borne E. coli O157:H7 using the integrating waveguide biosensor. Biosensors and Bioelectronics 21:678–683CrossRefGoogle Scholar
  59. Zordan M, Grafton M, Acharya G, Reece L, Cooper C, Aronson A, Park K, Leary J (2009) Detection of pathogenic E. coli O157:H7 by a hybrid microfluidic SPR and molecular imaging cytometry device. Cytometry 75A:155–162CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mark D. Burr
    • 1
  • Andreas Nocker
    • 2
  • Anne K. Camper
    • 1
  1. 1.Center for Biofilm Engineering, Montana State UniversityBozemanUSA
  2. 2.Centre for Water Science, Cranfield UniversityCranfield, BedfordshireUK

Personalised recommendations