Reverse Engineering for Biologically Inspired Cognitive Architectures: A Critical Analysis

  • Andreas Schierwagen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 718)


Research initiatives on both sides of the Atlantic try to utilize the operational principles of organisms and brains to develop biologically inspired, artificial cognitive systems. This paper describes the standard way bio-inspiration is gained, i.e. decompositional analysis or reverse engineering. The indisputable complexity of brain and mind raise the issue of whether they can be understood by applying the standard method. Using Robert Rosen’s modeling relation, the scientific analysis method itself is made a subject of discussion. It is concluded that the fundamental assumption of cognitive science, i.e. complex cognitive systems are decomposable, must be abandoned. Implications for investigations of organisms and behavior as well as for engineering artificial cognitive systems are discussed.


Reverse Engineering Decompositional Analysis Fundamental Assumption Computational Neuroscience Linear System Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Biologically-Inspired Cognitive Architectures, Proposer Information Pamphlet (PIP) for Broad Agency Announcement 05-18. DARPA Information Processing Technology Office, Arlington, VA (2005) Google Scholar
  2. 2.
    Markram, H.: The blue brain project. Nat. Rev., Neurosci. 7, 153–160 (2006) CrossRefGoogle Scholar
  3. 3.
    Albus, J.S., Bekey, G.A., Holland, J.H., Kanwisher, N.G., Krichmar, J.L., Mishkin, M., Modha, D.S., Raichle, M.E., Shepherd, G.M., Tononi, G.: A proposal for a decade of the mind initiative. Science 317, 1321 (2007) PubMedCrossRefGoogle Scholar
  4. 4.
    Perry, W., Broers, A., El-Baz, F., Harris, W., Healy, B., Hillis, W.D., et al.: Grand challenges for engineering. National Academy of Engineering, Washington (2008) Google Scholar
  5. 5.
    Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE). DARPA/IBM (2008) Google Scholar
  6. 6.
    European Commission, ICT Call 6 of the 7th Framework Programme, Objective 2.1: Cognitive Systems and Robotics (2009) Google Scholar
  7. 7.
    Schierwagen, A.: Brain organization and computation. In: Mira, J., Alvarez, J.R. (eds.) IWINAC 2007, Part I: Bio-inspired Modeling of Cognitive Tasks. LNCS, vol. 4527, pp. 31–40 (2007) CrossRefGoogle Scholar
  8. 8.
    Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S.: The cat is out of the bag: cortical simulations with 109 neurons and 1013 synapses. Supercomputing 09. In: Proc. ACM/IEEE SC2009 Conference on High Performance Networking and Computing, Nov. 14–20, 2009, Portland, OR (2009) Google Scholar
  9. 9.
    Brodkin, J.: IBM cat brain simulation dismissed as ‘hoax’ by rival scientist. Network World November, 24 (2009) Google Scholar
  10. 10.
    Dennett, D.C.: Cognitive science as reverse engineering: several meanings of ‘top down’ and ‘bottom up’. In: Prawitz, D., Skyrms, B., Westerståhl, D. (eds.) Logic, Methodology and Philosophy of Science IX, pp. 679–689. Elsevier, Amsterdam (1994) Google Scholar
  11. 11.
    Marom, S., Meir, R., Braun, E., Gal, A., Kermany, E., Eytan, D.: On the precarious path of reverse neuro-engineering. Front. Comput. Neurosci. 3 (2009). doi: 10.3389/neuro.10.005
  12. 12.
    Gurney, K.: Reverse engineering the vertebrate brain: methodological principles for a biologically grounded programme of cognitive modelling. Cogn. Comput. 1, 29–41 (2009) CrossRefGoogle Scholar
  13. 13.
    Rosen, R.: Anticipatory Systems: Philosophical, Mathematical and Methodological Foundations. Pergamon, Oxford (1985) Google Scholar
  14. 14.
    Rosen, R.: Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life. Columbia University Press, New York (1991) Google Scholar
  15. 15.
    Rosen, R.: Essays on Life Itself. Columbia University Press, New York (2000) Google Scholar
  16. 16.
    Keyser, S.J., Miller, G.A., Walker, E.: Cognitive Science in 1978. An unpublished report submitted to the Alfred P. Sloan Foundation, New York (1978) Google Scholar
  17. 17.
    Simon, H.: The Sciences of the Artificial. MIT Press, Cambridge (1969) Google Scholar
  18. 18.
    Wimsatt, W.: Forms of aggregativity. In: Donagan, A., Perovich, A.N., Wedin, M.V. (eds.) Human Nature and Natural Knowledge, pp. 259–291. D. Reidel, Dordrecht (1986) Google Scholar
  19. 19.
    Bechtel, W., Richardson, R.C.: Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton University Press, Princeton (1993) Google Scholar
  20. 20.
    Cummins, R.: The Nature of Psychological Explanation. MIT Press, Cambridge (1983) Google Scholar
  21. 21.
    Cummins, R.: “How does it work” versus “What are the laws?”: two conceptions of psychological explanation. In: Keil, F., Wilson, R.A. (eds.) Explanation and Cognition, pp. 117–145. MIT Press, Cambridge (2000) Google Scholar
  22. 22.
    Atkinson, A.P.: Persons systems and subsystems: the explanatory scope of cognitive psychology. Acta Anal. 20, 43–60 (1998) Google Scholar
  23. 23.
    Rosen, R.: The mind-brain problem and the physics of reductionism. In: Rosen, R. (ed.) Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life, pp. 126–140. Columbia University Press, New York (1991) Google Scholar
  24. 24.
    Dennett, D.C.: Consciousness Explained. Brown, Boston (1991) Google Scholar
  25. 25.
    Price, C.J., Friston, K.J.: Functional ontologies for cognition: the systematic definition of structure and function. Cogn. Neuropsychol. 22, 262–275 (2005) PubMedCrossRefGoogle Scholar
  26. 26.
    Uttal, W.R.: The New Phrenology. The Limits of Localizing Cognitive Processes in the Brain. MIT Press, Cambridge (2001) Google Scholar
  27. 27.
    Henson, R.: What can functional neuroimaging tell the experimental psychologist? Q. J. Exp. Psychol. A 58, 193–233 (2005) PubMedGoogle Scholar
  28. 28.
    Ross, E.D.: Cerebral localization of functions and the neurology of language: fact versus fiction or is it something else? Neuroscientist 16, 222–243 (2010) PubMedCrossRefGoogle Scholar
  29. 29.
    Schierwagen, A.: Real neurons and their circuitry: Implications for brain theory. iir–reporte, pp. 17–20. Akademie der Wissenschaften der DDR, Institut für Informatik und Rechentechnik, Eberswalde (1989) Google Scholar
  30. 30.
    Forrest, S.: Emergent computation: self-organizing, collective, and cooperative phenomena in natural and artificial computing networks. Physica D 42, 1–11 (1990) CrossRefGoogle Scholar
  31. 31.
    Levins, R.: Complex Systems. In: Waddington, C.H. (ed.) Towards a Theoretical Biology, vol. 3, pp. 73–88. University of Edinburgh Press, Edinburgh (1970) Google Scholar
  32. 32.
    Hubel, D.H., Wiesel, T.N.: Shape and arrangement of columns in cat’s striate cortex. J. Physiol. 165, 559–568 (1963) PubMedGoogle Scholar
  33. 33.
    Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997) PubMedCrossRefGoogle Scholar
  34. 34.
    Szenthágothai, J.: The modular architectonic principle of neural centers. Rev. Physiol., Biochem. Pharmacol. 98, 11–61 (1983) CrossRefGoogle Scholar
  35. 35.
    Maass, W., Markram, H.: Theory of the computational function of microcircuit dynamics. In: Grillner, S., Graybiel, A.M. (eds.) The Interface between Neurons and Global Brain Function, Dahlem Workshop Report 93, pp. 371–390. MIT Press, Cambridge (2006) Google Scholar
  36. 36.
    Arbib, M., Érdi, P., Szenthágothai, J.: Neural Organization: Structure, Function and Dynamics. MIT Press, Cambridge (1997) Google Scholar
  37. 37.
    Rockel, A.J., Hiorns, R.W., Powell, T.P.S.: The basic uniformity in structure of the neocortex. Brain 103, 221–244 (1980) PubMedCrossRefGoogle Scholar
  38. 38.
    Bressler, S.L., Tognoli, E.: Operational principles of neurocognitive networks. Int. J. Psychophysiol. 60, 139–148 (2006) PubMedCrossRefGoogle Scholar
  39. 39.
    Grillner, S., Markram, H., De Schutter, E., Silberberg, G., LeBeau, F.E.N.: Microcircuits in action from CPGs to neocortex. Trends Neurosci. 28, 525–533 (2005) PubMedCrossRefGoogle Scholar
  40. 40.
    Horton, J.C., Adams, D.L.: The cortical column: a structure without a function. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 360, 386–462 (2005) Google Scholar
  41. 41.
    Rakic, P.: Confusing cortical columns. Proc. Natl. Acad. Sci. USA 105, 12099–12100 (2008) PubMedCrossRefGoogle Scholar
  42. 42.
    Herculano-Housel, S., Collins, C.E., Wang, P., Kaas, J.: The basic nonuniformity of the cerebral cortex. Proc. Natl. Acad. Sci. USA 105, 12593–12598 (2008) CrossRefGoogle Scholar
  43. 43.
    de Garis, H., Shuo, C., Goertzel, B., Ruiting, L.: A world survey of artificial brain projects Part I: Large-scale brain simulations. Neurocomputing. (2010). doi: 10.1016/j.neucom.2010.08.004 Google Scholar
  44. 44.
    Gould, S.J., Lewontin, R.C.: The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B, Biol. Sci. 205, 581–598 (1979) CrossRefGoogle Scholar
  45. 45.
    Destexhe, A., Marder, E.: Plasticity in single neuron and circuit computations. Nature 431, 789–795 (2004) PubMedCrossRefGoogle Scholar
  46. 46.
    Frégnac, Y., et al.: Ups and downs in the genesis of cortical computation. In: Grillner, S., Graybiel, A.M. (eds.) Microcircuits: The Interface between Neurons and Global Brain Function, Dahlem Workshop Report 93, pp. 397–437. MIT Press, Cambridge (2006) Google Scholar
  47. 47.
    Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev., Neurosci. 10, 186–198 (2009) CrossRefGoogle Scholar
  48. 48.
    Bechtel, W.: Dynamics and decomposition: are they compatible? In: Proceedings of the Australasian Cognitive Science Society (1997) Google Scholar
  49. 49.
    Bechtel, W.: Decomposing the brain: A long term pursuit. Brain and Mind 3, 229–242 (2002) CrossRefGoogle Scholar
  50. 50.
    Poirier, P.: Be there, or be square! On the importance of being there. Semiotica 130, 151–176 (2000) Google Scholar
  51. 51.
    van Vreeswijk, C.: What is the neural code. In: van Hemmen, J.L., Sejnowski, T. Jr. (eds.): 23 Problems in System Neuroscience, pp. 143–159. Oxford University Press, Oxford (2006) CrossRefGoogle Scholar
  52. 52.
    Mikulecky, D.C.: Robert Rosen: the well posed question and its answer—why are organisms different from machines? Syst. Res. 17, 419–432 (2000) CrossRefGoogle Scholar
  53. 53.
    Wimsatt, W.C.: Complexity and organization. Proc. Biennial Meet. Philos. Sci. Ass. 1972, 67–86 (1972) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute for Computer Science, Intelligent Systems DepartmentUniversity of LeipzigLeipzigGermany

Personalised recommendations