Hanani–Tutte, Monotone Drawings, and Level-Planarity

  • Radoslav Fulek
  • Michael J. Pelsmajer
  • Marcus Schaefer
  • Daniel Štefankovič
Chapter

Abstract

A drawing of a graph is x-monotone if every edge intersects every vertical line at most once and every vertical line contains at most one vertex. Pach and Tóth showed that if a graph has an x-monotone drawing in which every pair of edges crosses an even number of times, then the graph has an x-monotone embedding in which the x-coordinates of all vertices are unchanged. We give a new proof of this result and strengthen it by showing that the conclusion remains true even if adjacent edges are allowed to cross each other oddly. This answers a question posed by Pach and Tóth. We show that a further strengthening to a “removing even crossings” lemma is impossible by separating monotone versions of the crossing and the odd crossing number.

Our results extend to level-planarity, which is a well-studied generalization of x-monotonicity. We obtain a new and simple algorithm to test level-planarity in quadratic time, and we show that x-monotonicity of edges in the definition of level-planarity can be relaxed.

References

  1. 1.
    D. Bienstock, N. Dean, Bounds for rectilinear crossing numbers. J. Graph Theor. 17(3), 333–348 (1993)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    G. Cairns, Y. Nikolayevsky, Bounds for generalized thrackles. Discr. Comput. Geom. 23(2), 191–206 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    C. Chojnacki (Haim Hanani), Über wesentlich unplättbare Kurven im drei-dimensionalen Raume. Fund. Math. 23, 135–142 (1934)Google Scholar
  4. 4.
    H. de Fraysseix, Trémaux trees and planarity, in The International Conference on Topological and Geometric Graph Theory, Electronics Notes in Discrete Mathematics, vol. 31 (Elsevier Science B. V., Amsterdam, 2008), pp. 169–180Google Scholar
  5. 5.
    H. de Fraysseix, P. Rosenstiehl, A characterization of planar graphs by Trémaux orders. Combinatorica 5(2), 127–135 (1985)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    G. Di Battista, E. Nardelli, Hierarchies and planarity theory. IEEE Trans. Syst. Man Cybernet. 18(6), 1035–1046 (1988/1989)Google Scholar
  7. 7.
    P. Eades, Q. Feng, X. Lin, H. Nagamochi, Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    A. Estrella-Balderrama, J. Joseph Fowler, S.G. Kobourov, On the characterization of level planar trees by minimal patterns, in Graph Drawing, ed. by D. Eppstein, E.R. Gansner. Lecture Notes in Computer Science, vol. 5849 (Springer-Verlag, Berlin, 2009), pp. 69–80Google Scholar
  9. 9.
    M.R. Garey, D.S. Johnson, Crossing number is NP-complete. SIAM J. Algebraic Discr. Methods 4(3), 312–316 (1983)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    M. Harrigan, P. Healy, Practical level planarity testing and layout with embedding constraints, in Graph Drawing. Lecture Notes in Computer Science, vol. 4875 (Springer-Verlag, 2008), pp. 62–68Google Scholar
  11. 11.
    P. Healy, A. Kuusik, Algorithms for multi-level graph planarity testing and layout. Theor. Comput. Sci. 320(2–3), 331–344 (2004)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    P. Healy, A. Kuusik, S. Leipert, A characterization of level planar graphs. Discr. Math. 280 (1–3), 51–63 (2004)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    L.S. Heath, S.V. Pemmaraju, Recognizing leveled-planar dags in linear time, in Graph Drawing, GD’95, ed. by F.J. Brandenburg. Lecture Notes in Computer Science, vol. 1027 (Springer-Verlag, Berlin, 1996), pp. 300–311Google Scholar
  14. 14.
    L.S. Heath, S.V. Pemmaraju, Stack and queue layouts of directed acyclic graphs. II. SIAM J. Comput. 28(5), 1588–1626 (1999) (electronic)Google Scholar
  15. 15.
    M. Jünger, S. Leipert, Level planar embedding in linear time. J. Graph Algorithm. Appl. 6(1), 67–113 (2002) (electronic)Google Scholar
  16. 16.
    M. Jünger, S. Leipert, P. Mutzel, Level planarity testing in linear time, in Graph Drawing, Montréal, QC, 1998. Lecture Notes in Computer Science, vol. 1547 (Springer-Verlag, Berlin, 1998), pp. 224–237Google Scholar
  17. 17.
    M. Jünger, S. Leipert, P. Mutzel, Pitfalls of using PQ-trees in automatic graph drawing, in Proceedings of the 5th International Symposium on Graph Drawing, GD’97, Rome, September 18–20, 1997, ed. by G. DiBattista. LNCS, vol. 1353 (Springer-Verlag, Berlin, 1998), pp. 193–204Google Scholar
  18. 18.
    D.J. Kleitman, A note on the parity of the number of crossings of a graph. J. Comb. Theor. Ser. B 21(1), 88–89 (1976)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    S. Leipert, Level planarity testing and embedding in linear time. Ph.D. thesis, Universität zu Köln, Köln, 1998Google Scholar
  20. 20.
    X. Lin, P. Eades, Towards area requirements for drawing hierarchically planar graphs. Theor. Comput. Sci. 292(3), 679–695 (2003)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    J. Matoušek, Using the Borsuk–Ulam theorem. Universitext (Springer, Berlin, 2003)Google Scholar
  22. 22.
    J. Matousek, M. Tancer, U. Wagner, Hardness of embedding simplicial complexes in d, in Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, January 4–6, 2009, ed. by C. Mathieu (SIAM, Philadelphia, PA, 2009), pp. 855–864Google Scholar
  23. 23.
    J. Pach, G. Tóth, Which crossing number is it anyway? J. Comb. Theor. Ser. B 80(2), 225–246 (2000)MATHCrossRefGoogle Scholar
  24. 24.
    J. Pach, G. Tóth, Monotone drawings of planar graphs. J. Graph Theor. 46(1), 39–47 (2004)MATHCrossRefGoogle Scholar
  25. 25.
    J. Pach, G. Tóth, Monotone drawings of planar graphs. ArXiv:1101.0967 e-prints (January 2011)Google Scholar
  26. 26.
    J. Pach, G. Tóth, Monotone crossing number, in Proceedings of the 19th International Symposium on Graph Drawing, GD’11, Eindhoven, September 21–23, 2011, ed. by Marc J. Van Kreveld and Bettina Speckmann. LNCS, 7034 (Springer-Verlag, Berlin, 2012), pp. 278–289Google Scholar
  27. 27.
    M.J. Pelsmajer, M. Schaefer, D. Štefankovič, Removing even crossings. J. Comb. Theor. Ser. B 97(4), 489–500 (2007)MATHCrossRefGoogle Scholar
  28. 28.
    M.J. Pelsmajer, M. Schaefer, D. Štefankovič, Removing independently even crossings. SIAM J. Discr. Math. 24(2), 379–393 (2010)MATHCrossRefGoogle Scholar
  29. 29.
    B. Randerath, E. Speckenmeyer, E. Boros, P.L. Hammer, A. Kogan, K. Makino, B. Simeone, O. Cepek, A satisfiability formulation of problems on level graphs. Electron. Notes Discr. Math. 9, 269–277 (2001)CrossRefGoogle Scholar
  30. 30.
    M. Schaefer, Hanani–Tutte and related results, in Geometry-Instuitive, Discrete and Convex-A Tribute to László Fejes Tóth (I.Bárány, K.J. Böröczky, G. Fejes Tóth, J. Pach, Eds.), Bolyai society Mathematical Studies, (Springer, Berlin) to apperGoogle Scholar
  31. 31.
    W.T. Tutte, Toward a theory of crossing numbers. J. Comb. Theor. 8, 45–53 (1970)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    P. Valtr, On the pair-crossing number, in Combinatorial and Computational Geometry. Math. Sci. Res. Inst. Publ., vol. 52 (Cambridge University Press, Cambridge, 2005), pp. 569–575Google Scholar
  33. 33.
    W.J. Wu, On the planar imbedding of linear graphs. I. J. Syst. Sci. Math. Sci. 5(4), 290–302 (1985)MATHGoogle Scholar
  34. 34.
    W.J. Wu, On the planar imbedding of linear graphs (continued). J. Syst. Sci. Math. Sci. 6(1), 23–35 (1986)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Radoslav Fulek
    • 1
  • Michael J. Pelsmajer
    • 2
  • Marcus Schaefer
    • 3
  • Daniel Štefankovič
    • 4
  1. 1.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of Applied MathematicsIllinois Institute of TechnologyChicagoUSA
  3. 3.Department of Computer ScienceDePaul UniversityChicagoUSA
  4. 4.Computer Science DepartmentUniversity of RochesterRochesterUSA

Personalised recommendations