Galectins as Pattern Recognition Receptors: Structure, Function, and Evolution

  • Gerardo R. VastaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 946)


Galectins constitute an evolutionary conserved family of ß-galactoside-binding proteins, ubiquitous in mammals and other vertebrate taxa, invertebrates, and fungi. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their immunoregulatory activities. A gradual paradigm shift has taken place in the past few years through the recognition that galectins also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity. Further, an additional level of functional complexity has emerged with the most recent findings that some parasites “subvert” the recognition roles of the vector/host galectins for successful attachment or invasion.


Pattern recognition receptors Galectins ß-Galactoside Carbohydrate recognition domain Glycans Structure Function Proto-type Chimera Tandem-repeat 



Research in the author’s lab reviewed here was supported by grant 5R01GM070589-06 from the National Institutes of Health, and grants IOB-0618409 and IOS0822257 from the National Science Foundation.


  1. Ahmed, H. and Vasta, G.R. (1994) Galectins: conservation of functionally and structurally relevant amino acid residues defines two types of carbohydrate recognition domains. Glycobiology 4, 548CrossRefGoogle Scholar
  2. Ahmed, H. and Vasta, G.R. (2008) Unlike mammalian GRIFIN, the zebrafish homologue (DrGRIFIN) represents a functional carbohydrate-binding galectin. Biochem Biophys Res Commun 371, 355CrossRefGoogle Scholar
  3. Ahmed, H., Bianchet, M.A., Amzel, L.M., Hirabayashi, J., Kasai, K.-I., Giga-Hama, Y., Tohda, H. and Vasta, G.R. (2002) Novel carbohydrate specificity of the 16-kDa galectin from Caenorhabditis elegans: binding to blood group precursor oligosaccharides (type 1, type 2, Talpha, and Tbeta) and gangliosides. Glycobiology 12, 461CrossRefGoogle Scholar
  4. Ahmed, H., Du, S.-J., O’Leary, N. and Vasta, G.R. (2004) Biochemical and molecular characterization of galectins from zebrafish (Danio rerio): notochord-specific expression of a prototype galectin during early embryogenesis. Glycobiology 14, 232Google Scholar
  5. Bianchet, M.A., Ahmed, H., Vasta, G.R. and Amzel, L.M. (2000) Soluble beta-galactosyl-binding lectin (galectin) from toad ovary: crystallographic studies of two protein-sugar complexes. Proteins 40, 388CrossRefGoogle Scholar
  6. Brewer, C.F., Miceli, M.C. and Baum, L.G. (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr Opin Struct Biol 12, 623CrossRefGoogle Scholar
  7. Cho, M. and Cummings, R.D. (1995) Galectin-1, a beta-galactoside -binding lectin in Chinese hamster ovary cells. II. Localization and biosynthesis. J Biol Chem 270, 5212CrossRefGoogle Scholar
  8. Cleves, A.E., Cooper, D.N., Barondes, S.H. and Kelly, R.B. (1996) A new pathway for protein export in Saccharomyces cerevisiae. J Cell Biol 133, 1026CrossRefGoogle Scholar
  9. Colnot, C., Fowlis, D., Ripoche, M.A., Bouchaert, I. and Poirier, F. (1998) Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev Dyn 211, 306-313PubMedCrossRefGoogle Scholar
  10. Colnot, C., Ripoche, M., Fowlis, D., Cannon, V., Scaerou, F., Cooper, D.N.W. and Poirier, F. (1997) The role of galectins in mouse development. Trends Glycosci. Glycotechnol. 9, 31-40CrossRefGoogle Scholar
  11. Colnot, C., Sidhu, S.S., Balmain, N. and Poirier, F. (2001) Uncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones. Dev Biol 229, 214CrossRefGoogle Scholar
  12. Cooper, D.N.W. (2002) Galectinomics: finding themes in complexity. Biochim. Biophys. Acta 1572, 231CrossRefGoogle Scholar
  13. Cooper, D.N., Massa, S.M. and Barondes, S.H. (1991) Endogenous muscle lectin inhibits myoblast adhesion to laminin. J Cell Biol 115, 1448Google Scholar
  14. Dam, T.K. and Brewer, C.F. (2008) Effects of clustered epitopes in multivalent ligand-receptor interactions. Biochemistry 47, 8476CrossRefGoogle Scholar
  15. Dias-Baruffi, M., Stowell, S.R., Song, S.-C., Arthur, C.M., Cho, M., Rodrigues, L.C., Montes, M.A.B., Rossi, M.A., James, J.A., McEver, R.P. and Cummings, R.D. (2010) Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology 20, 507PubMedCrossRefGoogle Scholar
  16. Fang, R., Mantle, M. and Ceri, H. (1993) Characterization of quail intestinal mucin as a ligand for endogenous quail lectin. Biochem J 293, 867PubMedGoogle Scholar
  17. Fogel, S., Guittaut, M., Legrand, A., Monsigny, M. and Hebert, E. (1999) The tat protein of HIV-1 induces galectin-3 expression. Glycobiology 9, 383-387PubMedCrossRefGoogle Scholar
  18. Fowlis, D., Colnot, C., Ripoche, M.A. and Poirier, F. (1995) Galectin-3 is expressed in the notochord, developing bones, and skin of the postimplantation mouse embryo. Dev Dyn 203, 251CrossRefGoogle Scholar
  19. Gabius, H.J. (1997) Animal lectins. Eur J Biochem 243, 543PubMedCrossRefGoogle Scholar
  20. Georgiadis, V., Stewart, H.J.S., Pollard, H.J., Tavsanoglu, Y., Prasad, R., Horwood, J., Deltour, L., Goldring, K., Poirier, F. and Lawrence-Watt, D.J. (2007) Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration. Dev Dyn 236, 1024CrossRefGoogle Scholar
  21. Gorski, J.P., Liu, F.-T., Artigues, A., Castagna, L.F. and Osdoby, P. (2002) New alternatively spliced form of galectin-3, a member of the beta-galactoside -binding animal lectin family, contains a predicted transmembrane-spanning domain and a leucine zipper motif. J Biol Chem 277, 18848CrossRefGoogle Scholar
  22. Harvell, C.D., Kim, K., Burkholder, J.M., Colwell, R.R., Epstein, P.R., Grimes, D.J., Hofmann, E.E., Lipp, E.K., Osterhaus, A.D., Overstreet, R.M., Porter, J.W., Smith, G.W. and Vasta, G.R. (1999) Emerging marine diseases–climate links and anthropogenic factors. Science 285, 1510CrossRefGoogle Scholar
  23. Hirabayashi, J. and Kasai, K. (1993) The family of metazoan metal-independent beta-galactoside -binding lectins: structure, function and molecular evolution. Glycobiology 3, 304CrossRefGoogle Scholar
  24. Hirashima, M., Kashio, Y., Nishi, N., Yamauchi, A., Imaizumi, T.A., Kageshita, T., Saita, N. and Nakamura, T. (2004) Galectin-9 in physiological and pathological conditions. Glycoconj J 19, 593PubMedCrossRefGoogle Scholar
  25. Houzelstein, D., Goncalves, I.R., Fadden, A.J., Sidhu, S.S., Cooper, D.N.W., Drickamer, K., Leffler, H. and Poirier, F. (2004) Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 21, 1187CrossRefGoogle Scholar
  26. Hsu, D.K., Hammes, S.R., Kuwabara, I., Greene, W.C. and Liu, F.T. (1996) Human T lymphotropic virus-I infection of human T lymphocytes induces expression of the beta-galactoside -binding lectin, galectin-3. Am J Pathol 148, 1670Google Scholar
  27. Kamhawi, S. (2006) Phlebotomine sand flies and Leishmania parasites: friends or foes? Trends Parasitol 22, 439PubMedCrossRefGoogle Scholar
  28. Kamhawi, S., Ramalho-Ortigao, M., Pham, V.M., Kumar, S., Lawyer, P.G., Turco, S.J., Barillas-Mury, C., Sacks, D.L. and Valenzuela, J.G. (2004) A role for insect galectins in parasite survival. Cell 119, 329PubMedCrossRefGoogle Scholar
  29. Leffler, H., Carlsson, S., Hedlund, M., Qian, Y. and Poirier, F. (2004) Introduction to galectins. Glycoconj J 19, 440Google Scholar
  30. Liao, D.I., Kapadia, G., Ahmed, H., Vasta, G.R. and Herzberg, O. (1994) Structure of S-lectin, a developmentally regulated vertebrate beta-galactoside -binding protein. Proc. Natl. Acad. Sci. 91, 1432Google Scholar
  31. Lipkowitz, M.S., Leal-Pinto, E., Cohen, B.E. and Abramson, R.G. (2004) Galectin 9 is the sugar-regulated urate transporter/channel UAT. Glycoconj J 19, 491PubMedCrossRefGoogle Scholar
  32. Liu, F.-T. and Hsu, D.K. (2007) The role of galectin-3 in promotion of the inflammatory response. Drug News Perspect 20, 460Google Scholar
  33. Lobsanov, Y.D., Gitt, M.A., Leffler, H., Barondes, S.H. and Rini, J.M. (1993) X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9-A resolution. J Biol Chem 268, 27038Google Scholar
  34. Medzhitov, R. and Janeway, C.A. (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296, 300CrossRefGoogle Scholar
  35. Mercier, S., St-Pierre, C., Pelletier, I., Ouellet, M., Tremblay, M.J. and Sato, S. (2008) Galectin-1 promotes HIV-1 infectivity in macrophages through stabilization of viral adsorption. Virology 371, 129CrossRefGoogle Scholar
  36. Morris, S., Ahmad, N., Andre, S., Kaltner, H., Gabius, H.-J., Brenowitz, M. and Brewer, F. (2004) Quaternary solution structures of galectins -1, -3, and -7. Glycobiology 14, 300Google Scholar
  37. Ogden, A.T., Nunes, I., Ko, K., Wu, S., Hines, C.S., Wang, A.F., Hegde, R.S. and Lang, R.A. (1998) GRIFIN, a novel lens-specific protein related to the galectin family. J Biol Chem 273, 28896CrossRefGoogle Scholar
  38. Okumura, C.Y., Baum, L.G. and Johnson, P.J. (2008) Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis. Cell Microbiol 10, 2078PubMedCrossRefGoogle Scholar
  39. Ouellet, M., Mercier, S., Pelletier, I., Bounou, S., Roy, J., Hirabayashi, J., Sato, S. and Tremblay, M.J. (2005) Galectin-1 acts as a soluble host factor that promotes HIV-1 infectivity through stabilization of virus attachment to host cells. J Immunol 174, 4126Google Scholar
  40. Pace, K.E., Lebestky, T., Hummel, T., Arnoux, P., Kwan, K. and Baum, L.G. (2002) Characterization of a novel Drosophila melanogaster galectin. Expression in developing immune, neural, and muscle tissues. J Biol Chem 277, 13091PubMedCrossRefGoogle Scholar
  41. Partridge, E.A., Le Roy, C., Di Guglielmo, G.M., Pawling, J., Cheung, P., Granovsky, M., Nabi, I.R., Wrana, J.L. and Dennis, J.W. (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120PubMedCrossRefGoogle Scholar
  42. Patterson, R.J., Dagher, S.F., Vyakarnam, A. and Wang, J.L. (1997) Nuclear galectins : functionally redundant components in processing of pre-mRNA. Trends Glycosci. Glycotechnol. 9, 77CrossRefGoogle Scholar
  43. Puche, A.C., Poirier, F., Hair, M., Bartlett, P.F. and Key, B. (1996) Role of galectin-1 in the developing mouse olfactory system. Dev Biol 179, 274PubMedCrossRefGoogle Scholar
  44. Rabinovich, G.A., Liu, F.T., Hirashima, M. and Anderson, A. (2007a) An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand J Immunol 66, 143Google Scholar
  45. Rabinovich, G.A., Rubinstein, N. and Toscano, M.A. (2002) Role of galectins in inflammatory and immunomodulatory processes. Biochim Biophys Acta 1572, 274PubMedCrossRefGoogle Scholar
  46. Rabinovich, G.A., Toscano, M.A., Jackson, S.S. and Vasta, G.R. (2007b) Functions of cell surface galectin-glycoprotein lattices. Curr Opin Struct Biol 17, 520CrossRefGoogle Scholar
  47. Rossi, B., Espeli, M., Schiff, C. and Gauthier, L. (2006) Clustering of pre-B cell integrins induces galectin-1-dependent pre-B cell receptor relocalization and activation. J Immunol 177, 796PubMedGoogle Scholar
  48. Saouros, S., Edwards-Jones, B., Reiss, M., Sawmynaden, K., Cota, E., Simpson, P., Dowse, T.J., Jakle, U., Ramboarina, S., Shivarattan, T., Matthews, S. and Soldati-Favre, D. (2005) A novel galectin-like domain from Toxoplasma gondii micronemal protein 1 assists the folding, assembly, and transport of a cell adhesion complex. J Biol Chem 280, 38591CrossRefGoogle Scholar
  49. Sato, S. and Hughes, R.C. (1992) Binding specificity of a baby hamster kidney lectin for H type I and II chains, polylactosamine glycans, and appropriately glycosylated forms of laminin and fibronectin. J Biol Chem 267, 6990Google Scholar
  50. Sato, S. and Hughes, R.C. (1994) Regulation of secretion and surface expression of Mac-2, a galactoside -binding protein of macrophages. J Biol Chem 269, 4424PubMedGoogle Scholar
  51. Sato, S. and Nieminen, J. (2004) Seeing strangers or announcing “danger”: Galectin-3 in two models of innate immunity Glycoconj J 19, 583PubMedCrossRefGoogle Scholar
  52. Schroder, H.C., Ushijima, H., Theis, C., Seve, A.P., Hubert, J. and Muller, W.E. (1995) Expression of nuclear lectin carbohydrate-binding protein 35 in human immunodeficiency virus type 1-infected Molt-3 cells. J Acquir Immune Defic Syndr Hum Retrovirol 9, 340PubMedGoogle Scholar
  53. Schwarz, F.P., Ahmed, H., Bianchet, M.A., Amzel, L.M. and Vasta, G.R. (1998) Thermodynamics of bovine spleen galectin-1 binding to disaccharides: correlation with structure and its effect on oligomerization at the denaturation temperature. Biochemistry 37, 5877Google Scholar
  54. Seetharaman, J., Kanigsberg, A., Slaaby, R., Leffler, H., Barondes, S.H. and Rini, J.M. (1998) X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-A resolution. J Biol Chem 273, 13047PubMedCrossRefGoogle Scholar
  55. Shoji, H., Nishi, N., Hirashima, M. and Nakamura, T. (2003) Characterization of the Xenopus galectin family. Three structurally different types as in mammals and regulated expression during embryogenesis. J Biol Chem 278, 12293CrossRefGoogle Scholar
  56. Sparrow, C.P., Leffler, H. and Barondes, S.H. (1987) Multiple soluble beta-galactoside -binding lectins from human lung. J Biol Chem 262, 7390Google Scholar
  57. Stalz, H., Roth, U., Schleuder, D., Macht, M., Haebel, S., Strupat, K., Peter-Katalinic, J. and Hanisch, F.-G. (2006) The Geodia cydonium galectin exhibits prototype and chimera -type characteristics and a unique sequence polymorphism within its carbohydrate recognition domain. Glycobiology 16, 414CrossRefGoogle Scholar
  58. Stowell, S.R., Karmakar, S., Stowell, C.J., Dias-Baruffi, M., McEver, R.P. and Cummings, R.D. (2007) Human galectin-1, -2, and -4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated T cells. Blood 109, 227CrossRefGoogle Scholar
  59. Stowell, S.R., Qian, Y., Karmakar, S., Koyama, N.S., Dias-Baruffi, M., Leffler, H., McEver, R.P. and Cummings, R.D. (2008) Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J Immunol 180, 3102Google Scholar
  60. Tasumi, S. and Vasta, G.R. (2007) A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J. Immunol. 179, 3098Google Scholar
  61. van Die, I. and Cummings, R.D. (2010) Glycan gimmickry by parasitic helminths: a strategy for modulating the host immune response? Glycobiology 20, 2PubMedCrossRefGoogle Scholar
  62. Varki, A. (2006) Nothing in glycobiology makes sense, except in the light of evolution. Cell 126, 841PubMedCrossRefGoogle Scholar
  63. Vasta, G.R. (2009) Roles of galectins in infection. Nat Rev Microbiol 7, 424PubMedCrossRefGoogle Scholar
  64. Vasta, G.R., Quesenberry, M., Ahmed, H. and O’Leary, N. (1999) C-type lectins and galectins mediate innate and adaptive immune functions: their roles in the complement activation pathway. Dev Comp Immunol 23, 401PubMedCrossRefGoogle Scholar
  65. Walser, P.J., Kues, U., Aebi, M. and Kunzler, M. (2005) Ligand interactions of the Coprinopsis cinerea galectins . Fungal Genet Biol 42, 305CrossRefGoogle Scholar
  66. Watt, D.J., Jones, G.E. and Goldring, K. (2004) The involvement of galectin-1 in skeletal muscle determination, differentiation and regeneration. Glycoconj J 19, 615PubMedCrossRefGoogle Scholar
  67. Yang, R.-Y., Rabinovich, G.A. and Liu, F.-T. (2008) Galectins: structure , function and therapeutic potential. Expert Rev Mol Med 10Google Scholar
  68. Zhou, Q. and Cummings, R.D. (1990) The S-type lectin from calf heart tissue binds selectively to the carbohydrate chains of laminin. Arch Biochem Biophys 281, 35CrossRefGoogle Scholar
  69. Zuñiga, E., Gruppi, A., Hirabayashi, J., Kasai, K.I. and Rabinovich, G.A. (2001) Regulated expression and effect of galectin-1 on Trypanosoma cruzi-infected macrophages: modulation of microbicidal activity and survival. Infect Immun 69, 6804PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, School of Medicine, IMETUniversity of MarylandBaltimoreUSA

Personalised recommendations