Current Topics in Innate Immunity II pp 335-351

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 946)

Nutritional Immunity: Homology Modeling of Nramp Metal Import



The Natural resistance-associated macrophage proteins (Nramp1 and 2) are proton-dependent solute carriers of divalent metals such as Fe2+ and Mn2+ (Slc11a1 and 2). Their expression in both resting and microbicidal macrophages which metabolize iron differently, raises questions about Nramp mechanism of Me2+ transport and its impact in distinct phenotypic contexts. We developed a low resolution 3D model for Slc11 based on detailed phylogeny and remote homology threading using Escherichia coli Nramp homolog (proton-dependent Mn2+transporter, MntH) as experimental system. The predicted fold is consistent with determinations of transmembrane topology and activity; it indicates Slc11 carriers are part of the LeuT superfamily. Homology implies that inverted structural symmetry facilitates Slc11 H+-driven Me2+ import and provides a 3D framework to test structure-activity relationships in macrophages and study functional evolution of MntH/Nramp (Slc11) carriers.


Nramp (natural resistance-associated macrophage protein) Phagosome Proton-dependent efflux Divalent metals (Fe2+, Mn2+,…) Membrane transport Homology threading Phylogeny Structure 3D Inverted symmetry 


  1. Abramson J. and Wright E.M. (2009) Structure and function of Na(+)-symporters with inverted repeats. Curr Opin Struct Biol 19,425-32PubMedCrossRefGoogle Scholar
  2. A-Gonzalez N., Bensinger S.J., Hong C., et al. (2009) Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31,245-58PubMedCrossRefGoogle Scholar
  3. Anderson E.S., Paulley J.T., Gaines J.M., et al. (2009) The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 77,3466-74PubMedCrossRefGoogle Scholar
  4. Bellora F., Castriconi R., Dondero A., et al. (2010) The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1007654108Google Scholar
  5. Bensinger S.J. and Tontonoz P. (2008) Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454,470-77PubMedCrossRefGoogle Scholar
  6. Biswas S.K. and Mantovani A. (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11,889-96PubMedCrossRefGoogle Scholar
  7. Blanco E., Kannengiesser C., Grandchamp B. et al. (2009) Not all DMT1 mutations lead to iron overload. Blood Cells Mol Dis 43,199-201PubMedCrossRefGoogle Scholar
  8. Boudker O. and Verdon G. (2010) Structural perspectives on secondary active transporters. Trends Pharmacol Sci 31,418-26PubMedCrossRefGoogle Scholar
  9. Brown S.A., Palmer K.L., Whiteley M. (2008) Revisiting the host as a growth medium. Nat Rev Microbiol 6,657-66PubMedCrossRefGoogle Scholar
  10. Cailliatte R., Schikora A., Briat J.F., et al. (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22,904-17PubMedCrossRefGoogle Scholar
  11. Cairo G., Locati M., Mantovani A. (2010) Control of iron homeostasis as a key component of macrophage polarization. Haematologica 95,1801-03CrossRefGoogle Scholar
  12. Cellier M., Privé G., Belouchi A., et al. (1995) Nramp defines a family of membrane proteins. Proc Natl Acad Sci U S A 92,10089-93PubMedCrossRefGoogle Scholar
  13. Cellier M.F., Bergevin I., Boyer E., et al. (2001) Polyphyletic origins of bacterial Nramp transporters. Trends Genet 17,365-70PubMedCrossRefGoogle Scholar
  14. Cellier M.F., Courville P., Campion C. (2007) Nramp1 phagocyte intracellular metal withdrawal defense. Microbes Infect 9,1662-70PubMedCrossRefGoogle Scholar
  15. Chaloupka R., Courville P., Veyrier F., et al. (2005) Identification of functional amino acids in the Nramp family by a combination of evolutionary analysis and biophysical studies of metal and proton cotransport in vivo. Biochemistry 44,726-33PubMedCrossRefGoogle Scholar
  16. Choi S., Jeon J., Yang J.S., et al. (2008) Common occurrence of internal repeat symmetry in membrane proteins. Proteins 71,68-80PubMedCrossRefGoogle Scholar
  17. Claxton D.P., Quick M., Shi L., et al. (2010) Ion/substrate-dependent conformational dynamics of a bacterial homolog of neurotransmitter:sodium symporters. Nat Struct Mol Biol 17,822-29PubMedCrossRefGoogle Scholar
  18. Corna G., Campana L., Pignatti E., et al. (2010) Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 95,1814-22PubMedCrossRefGoogle Scholar
  19. Courville P., Chaloupka R., Veyrier F., et al. (2004) Determination of transmembrane topology of the Escherichia coli natural resistance-associated macrophage protein (Nramp) ortholog. J Biol Chem 279,3318-26PubMedCrossRefGoogle Scholar
  20. Courville P., Chaloupka R., Cellier M.F. (2006) Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. Biochem Cell Biol 84,960-78PubMedCrossRefGoogle Scholar
  21. Courville P., Urbankova E., Rensing C., et al. (2008) Solute carrier 11 cation symport requires distinct residues in transmembrane helices 1 and 6. J Biol Chem 283,9651-58PubMedCrossRefGoogle Scholar
  22. Czachorowski M., Lam-Yuk-Tseung S., Cellier M., et al. (2009) Transmembrane topology of the mammalian Slc11a2 iron transporter. Biochemistry 48,8422-34PubMedCrossRefGoogle Scholar
  23. Dutzler R., Campbell E.B., Cadene M., et al. (2002) X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity. Nature 415,287-94PubMedCrossRefGoogle Scholar
  24. Elkon K.B. (2009) Autoimmunity: apoptotic fats grease transcription. Nat Med 15,1246-48PubMedCrossRefGoogle Scholar
  25. Elliott M.R. and Ravichandran K.S. (2010) Clearance of apoptotic cells: implications in health and disease. J Cell Biol 189,1059-70PubMedCrossRefGoogle Scholar
  26. Eswar N., Eramian D., Webb B., et al. (2008) Protein structure modeling with MODELLER. Methods Mol Biol 426,145-59PubMedCrossRefGoogle Scholar
  27. Faham S., Watanabe A., Besserer G.M., et al. (2008) The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science 321,810-14PubMedCrossRefGoogle Scholar
  28. Fang Y., Jayaram H., Shane T., et al. (2009) Structure of a prokaryotic virtual proton pump at 3.2 A resolution. Nature 460,1040-43PubMedGoogle Scholar
  29. Fontaine C., Rigamonti E., Pourcet B., et al. (2008) The nuclear receptor Rev-erbalpha is a liver X receptor (LXR) target gene driving a negative feedback loop on select LXR-induced pathways in human macrophages. Mol Endocrinol 22,1797-811PubMedCrossRefGoogle Scholar
  30. Forrest L.R. and Rudnick G. (2009) The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 24,377-86PubMedCrossRefGoogle Scholar
  31. Forrest L.R., Zhang Y.W., Jacobs M.T., et al. (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci U S A 105,10338-43PubMedCrossRefGoogle Scholar
  32. Fredriksson R., Nordstrom K.J., Stephansson O., et al. (2008) The solute carrier (SLC) complement of the human genome: phylogenetic classification reveals four major families. FEBS Lett 582,3811-16PubMedCrossRefGoogle Scholar
  33. Frickey T. and Lupas A. (2004) CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20,3702-04PubMedCrossRefGoogle Scholar
  34. Ganz T. (2009) Iron in innate immunity: starve the invaders. Curr Opin Immunol 21,63-67PubMedCrossRefGoogle Scholar
  35. Gao X., Zhou L., Jiao X., et al. (2010) Mechanism of substrate recognition and transport by an amino acid antiporter. Nature 463,828-32PubMedCrossRefGoogle Scholar
  36. Geissmann F., Manz M.G., Jung S., et al. (2010) Development of monocytes, macrophages, and dendritic cells. Science 327,656-61PubMedCrossRefGoogle Scholar
  37. Gordon S. and Martinez F.O. (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32,593-604PubMedCrossRefGoogle Scholar
  38. Guda C., Lu S., Scheeff E.D., et al. (2004) CE-MC: a multiple protein structure alignment server. Nucleic Acids Res 32,W100-03PubMedCrossRefGoogle Scholar
  39. Gunshin H., Fujiwara Y., Custodio A.O., et al. (2005) Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest 115,1258-66PubMedGoogle Scholar
  40. Howitt J., Putz U., Lackovic J., et al. (2009) Divalent metal transporter 1 (DMT1) regulation by Ndfip1 prevents metal toxicity in human neurons. Proc Natl Acad Sci U S A. 106,15489-94PubMedCrossRefGoogle Scholar
  41. Jakubovics N.S. and Valentine R.A. (2009) A new direction for manganese homeostasis in bacteria: identification of a novel efflux system in Streptococcus pneumoniae. Mol Microbiol 72,1-4PubMedCrossRefGoogle Scholar
  42. Javelle A., Lupo D., Ripoche P., et al. (2008) Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB. Proc Natl Acad Sci U S A. 105,5040-45PubMedCrossRefGoogle Scholar
  43. Jeannin P., Jaillon S., Delneste Y. (2008) Pattern recognition receptors in the immune response against dying cells. Curr Opin Immunol 20,530-37PubMedCrossRefGoogle Scholar
  44. Jensen L.T., Carroll M.C., Hall M.D. et al. (2009) Down-regulation of a manganese transporter in the face of metal toxicity. Mol Biol Cell 20,2810-19PubMedCrossRefGoogle Scholar
  45. Kehl-Fie T.E. and Skaar E.P. (2010) Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 14,218-24PubMedCrossRefGoogle Scholar
  46. Khafizov K., Staritzbichler R., Stamm M., et al. (2010) A Study of the Evolution of Inverted-Topology Repeats from LeuT-Fold Transporters Using AlignMe. Biochemistry 49,10702-13PubMedCrossRefGoogle Scholar
  47. Korkhov V.M. and Tate C.G. (2009) An emerging consensus for the structure of EmrE. Acta Crystallogr D Biol Crystallogr 65,186-92PubMedCrossRefGoogle Scholar
  48. Krishnamurthy H., Piscitelli C.L., Gouaux E. (2009) Unlocking the molecular secrets of sodium-coupled transporters. Nature 459,347-55PubMedCrossRefGoogle Scholar
  49. Kuntal B.K., Aparoy P., Reddanna P. (2010) EasyModeller: A graphical interface to MODELLER. BMC Res Notes 3,226PubMedCrossRefGoogle Scholar
  50. Lam-Yuk-Tseung S. and Gros P. (2006) Distinct targeting and recycling properties of two isoforms of the iron transporter DMT1 (NRAMP2, Slc11A2). Biochemistry 45,2294-301PubMedCrossRefGoogle Scholar
  51. Lam-Yuk-Tseung S., Picard V., Gros P. (2006) Identification of a tyrosine-based motif (YGSI) in the amino terminus of Nramp1 (Slc11a1) that is important for lysosomal targeting. J Biol Chem 281,31677-88PubMedCrossRefGoogle Scholar
  52. Makui H., Roig E., Cole S.T., et al. (2000) Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol Microbiol 35,1065-78PubMedCrossRefGoogle Scholar
  53. Marro S., Chiabrando D., Messana E., et al. (2010) Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter. Haematologica 95,1261-68PubMedCrossRefGoogle Scholar
  54. Martinez F.O., Gordon S., Locati M., et al. (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177,7303-11PubMedGoogle Scholar
  55. Mukundan L., Odegaard J.I., Morel C.R., et al. (2009) PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat Med 15,1266-72PubMedCrossRefGoogle Scholar
  56. Muñoz M., Villar I., García-Erce J.A. (2009) An update on iron physiology. World J Gastroenterol 15,4617-26PubMedCrossRefGoogle Scholar
  57. Nasie I., Steiner-Mordoch S., Gold A., et al. (2010) Topologically random insertion of EmrE supports a pathway for evolution of inverted repeats in ion-coupled transporters. J Biol Chem 285,15234-44PubMedCrossRefGoogle Scholar
  58. Odegaard J.I., Ricardo-Gonzalez R.R., Red Eagle A., et al. (2008) Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 7,496-507PubMedCrossRefGoogle Scholar
  59. Recalcati S., Locati M., Marini A., et al. (2010) Differential regulation of iron homeostasis during human macrophage polarized activation. Eur J Immunol 40,824-35PubMedCrossRefGoogle Scholar
  60. Ressl S., Terwisscha van Scheltinga A.C., Vonrhein C., et al. (2009) Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458,47-52PubMedCrossRefGoogle Scholar
  61. Richer E., Courville P., Bergevin I., et al. (2003) Horizontal gene transfer of “prototype” Nramp in bacteria. J Mol Evol 57,363-76PubMedCrossRefGoogle Scholar
  62. Schmidt H.A. and von Haeseler A. (2007) Maximum-likelihood analysis using TREE-PUZZLE. Curr Protoc Bioinformatics Chapter 6:Unit 6.6Google Scholar
  63. Schug T.T. and Li X. (2009) PPARdelta-mediated macrophage activation: a matter of fat. Dis Model Mech 2,421-22PubMedCrossRefGoogle Scholar
  64. Schulze S., Köster S., Geldmacher U., et al. (2010) Structural basis of Na(+)-independent and cooperative substrate/product antiport in CaiT. Nature 467,233-36PubMedCrossRefGoogle Scholar
  65. Settivari R., Levora J., Nass R. (2009) The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in Caenorhabditis elegans models of manganism and parkinson disease. J Biol Chem 284,35758-68PubMedCrossRefGoogle Scholar
  66. Shaffer P.L., Goehring A., Shankaranarayanan A., et al. (2009) Structure and mechanism of a Na+-independent amino acid transporter. Science 325,1010-14PubMedCrossRefGoogle Scholar
  67. Shimamura T., Weyand S., Beckstein O., et al. (2010) Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science 328,470-73PubMedCrossRefGoogle Scholar
  68. Sierra-Filardi E., Vega M.A., Sánchez-Mateos P., et al. (2010) Heme Oxygenase-1 expression in M-CSF-polarized M2 macrophages contributes to LPS-induced IL-10 release. Immunobiology 215,788-95PubMedCrossRefGoogle Scholar
  69. Soe-Lin S., Apte S.S., Andriopoulos B. Jr, et al. (2009) Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo. Proc Natl Acad Sci U S A 106,5960-65PubMedCrossRefGoogle Scholar
  70. Takeuchi O. and Akira S. (2010) Pattern recognition receptors and inflammation. Cell 140,805-20PubMedCrossRefGoogle Scholar
  71. Tamura K., Dudley J., Nei M., et al. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24,1596-99PubMedCrossRefGoogle Scholar
  72. Tang L., Bai L., Wang W.H., et al. (2010) Crystal structure of the carnitine transporter and insights into the antiport mechanism. Nat Struct Mol Biol 17,492-96PubMedCrossRefGoogle Scholar
  73. Töröcsik D., Szanto A., Nagy L. (2009) Oxysterol signaling links cholesterol metabolism and inflammation via the liver X receptor in macrophages. Mol Aspects Med 30,134-52PubMedCrossRefGoogle Scholar
  74. Vallelian F., Schaer C.A., Kaempfer T., et al. (2010) Glucocorticoid treatment skews human monocyte differentiation into a hemoglobin-clearance phenotype with enhanced heme-iron recycling and antioxidant capacity. Blood 116,5347-56PubMedCrossRefGoogle Scholar
  75. Vidal S.M., Malo D., Vogan K., et al. (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73,469-85PubMedCrossRefGoogle Scholar
  76. Wang D., Song Y., Li J., et al. (2010) Structure and metal ion binding of the first transmembrane domain of DMT1. Biochim Biophys Acta doi:10.1016/j.bbamem.2010.11.005Google Scholar
  77. Weinberg E.D. (1977) Infection and iron metabolism. Am J Clin Nutr 30,1485-90PubMedGoogle Scholar
  78. Weinberg E.D. (2009) Iron availability and infection. Biochim Biophys Acta 1790,600-05PubMedCrossRefGoogle Scholar
  79. Weyand S., Shimamura T., Yajima S., et al. (2008) Structure and molecular mechanism of a nucleobase-cation-symport-1 family transporter. Science 322,709-13PubMedCrossRefGoogle Scholar
  80. Williams R.J. (2007) A system’s view of the evolution of life. J R Soc Interface 4,1049-70PubMedCrossRefGoogle Scholar
  81. Xia J., Yamaji N., Kasai T., et al. (2010) Plasma membrane-localized transporter for aluminum in rice. Proc Natl Acad Sci U S A 107,18381-85PubMedCrossRefGoogle Scholar
  82. Xiao S., Li J., Wang Y., et al. (2010) Identification of an “alpha-helix-extended segment-alpha-helix” conformation of the sixth transmembrane domain in DMT1. Biochim Biophys Acta 1798,1556-64PubMedCrossRefGoogle Scholar
  83. Xiu Y.M. (1996) Trace elements in health and diseases. Biomed Environ Sci 9,130-36PubMedGoogle Scholar
  84. Yamashita A., Singh S.K., Kawate T., et al. (2005) Crystal structure of a bacterial homologue of Na+/Cl–dependent neurotransmitter transporters. Nature 437,215-23PubMedCrossRefGoogle Scholar
  85. Zhao Y., Quick M., Shi L., et al. (2010) Substrate-dependent proton antiport in neurotransmitter: sodium symporters. Nat Chem Biol 6,109-16PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.INRS-Institut Armand-FrappierInstitut National de la Recherche ScientifiqueLavalCanada

Personalised recommendations