Platelets, Complement, and Contact Activation: Partners in Inflammation and Thrombosis

  • Osama A. Hamad
  • Jennie Bäck
  • Per H. Nilsson
  • Bo Nilsson
  • Kristina N. EkdahlEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 946)


Platelet activation during thrombotic events is closely associated with complement and contact system activation, which in turn leads to inflammation . Here we review the interactions between activated platelets and the complement and contact activation systems in clotting blood. Chondroitin sulfate A (CS-A), released from alpha granules during platelet activation, is a potent mediator of crosstalk between platelets and the complement system. CS-A activates complement in the fluid phase, generating anaphylatoxins that mediate leukocyte activation. No complement activation seems to occur on the activated platelet surface, but C3 in the form of C3(H2O) is bound to the surfaces of activated platelets . This finding is consistent with the strong expression of membrane-bound complement regulators present at the platelet surface. CS-A exposed on the activated platelets is to a certain amount responsible for recruiting soluble regulators to the surface. Platelet-bound C3(H2O) acts as a ligand for leukocyte CR1 (CD35), potentially enabling platelet–leukocyte interactions. In addition, platelet activation leads to the activation of contact system enzymes, which are specifically inhibited by antithrombin, rather than by C1INH, as is the case when contact activation is induced by material surfaces. Thus, in addition to their traditional role as initiators of secondary hemostasis, platelets also act as mediators and regulators of inflammation in thrombotic events.


Chondroitin sulfate Complement Contact activation Inflammation Platelets 



This work was supported by grants from the Swedish Research Council (VR) 2009-4675, 2009-4462, from the Swedish Research Council, and Swedish Research Council/SSF/Vinnova contract grant number 60761701, and by faculty grants from the Linnæus University. We thank Dr. Deborah McClellan for excellent editorial assistance.


  1. Abrink M, Grujic M, Pejler G (2004) Serglycin is essential for maturation of mast cell secretory granule. J Biol Chem 279,40897-40905Google Scholar
  2. Barber AJ, Kaser-Glanzmann R, Jakabova M, Luscher EF (1972) Characterization of a chondroitin 4 -sulfate proteoglycan carrier for heparin neutralizing activity (platelet factor 4 ) released from human blood platelets. Biochim Biophys Acta 286,312-329PubMedCrossRefGoogle Scholar
  3. Blockmans D, Deckmyn H, Vermylen J (1995) Platelet activation. Blood Rev 9,143-156PubMedCrossRefGoogle Scholar
  4. Bode AP, Hickerson DH (2000) Characterization and quantitation by flow cytometry of membranous microparticles formed during activation of platelet suspensions with ionophore or thrombin. Platelets 11,259-271PubMedCrossRefGoogle Scholar
  5. Bradford HN, Dela Cadena RA, Kunapuli SP, Dong JF, Lopez JA, Colman RW (1997) Human kininogens regulate thrombin binding to platelets through the glycoprotein Ib-IX-V complex. Blood 90,1508-1515PubMedGoogle Scholar
  6. Bradford HN, Pixley RA, Colman RW (2000) Human factor XII binding to the glycoprotein Ib-IX-V complex inhibits thrombin-induced platelet aggregation. J Biol Chem 275,22756-22763PubMedCrossRefGoogle Scholar
  7. Brass LF (2003) Thrombin and platelet activation. Chest 124,18S-25SPubMedCrossRefGoogle Scholar
  8. Bäck J, Huber-Lang M, Elgue G, Kalbitz M, Sanchez J, Ekdahl KN, Nilsson B (2009) Distinctive regulation of contact activation by antithrombin and C1-inhibitor on activated platelets and material surfaces. Biomaterials 30,6573-6580PubMedCrossRefGoogle Scholar
  9. Bäck J, Sanchez J, Elgue G, Ekdahl KN, Nilsson B (2010) Activated human platelets induce factor XIIa-mediated contact activation. Biochem Biophys Res Commun 391,11-17PubMedCrossRefGoogle Scholar
  10. Camera M, Frigerio M, Toschi V, Brambilla M, Rossi F, Cottell DC, Maderna P, Parolari A, Bonzi R, De Vincenti O, Tremoli E (2003) Platelet activation induces cell-surface immunoreactive tissue factor expression, which is modulated differently by antiplatelet drugs. Arterioscler Thromb Vasc Biol 23,1690-1696PubMedCrossRefGoogle Scholar
  11. Carroll MC (2000) The role of complement in B cell activation and tolerance. Adv Immunol 74,61-88PubMedCrossRefGoogle Scholar
  12. Colman R, Hirsh, J., Marder, V., Salzman, E. (1994) Overview of Hemostasis. In, Haemostasis and Thrombosis Basic Principles and Clinical Practice (Colman, R., Hirsh, J., Marder, V., Salzman, E., ed), pp 3-18 Philadelphia, Lippincott Williams & WalkinsGoogle Scholar
  13. da Costa Martins PA, van Gils JM, Mol A, Hordijk PL, Zwaginga JJ (2006) Platelet binding to monocytes increases the adhesive properties of monocytes by up-regulating the expression and functionality of beta1 and beta2 integrins. J Leukoc Biol 79,499-507PubMedCrossRefGoogle Scholar
  14. de Agostini A, Lijnen HR, Pixley RA, Colman RW, Schapira M (1984) Inactivation of factor XII active fragment in normal plasma. Predominant role of C-1-inhibitor. J Clin Invest 73,1542-1549PubMedCrossRefGoogle Scholar
  15. Del Conde I, Cruz MA, Zhang H, Lopez JA, Afshar-Kharghan V (2005) Platelet activation leads to activation and propagation of the complement system. J Exp Med 201,871-879PubMedCrossRefGoogle Scholar
  16. Donato JL, Nogueira MD, Marcondes S, Antunes E, Nader HB, Dietrich CP, de Nucci G (1994) The kinetics of chondroitin 4-sulfate release from stimulated platelets and its relation to thromboxane A2 formation and granule secretion. Braz J Med Biol Res 27,2163-2167PubMedGoogle Scholar
  17. Ehlers R, Ustinov V, Chen Z, Zhang X, Rao R, Luscinskas FW, Lopez J, Plow E, Simon DI (2003) Targeting platelet-leukocyte interactions, identification of the integrin Mac-1 binding site for the platelet counter receptor glycoprotein Ibalpha. J Exp Med 198,1077-1088PubMedCrossRefGoogle Scholar
  18. Endresen GK, Mellbye OJ (1984) Studies on the binding of complement factor C3 to the surface of human blood platelets. Haemostasis 14,269-280Google Scholar
  19. Forbes CD, Pensky J, Ratnoff OD (1970) Inhibition of activated Hageman factor and activated plasma thromboplastin antecedent by purified serum C1 inactivator. J Lab Clin Med 76,809-815PubMedGoogle Scholar
  20. Forlow SB, McEver RP, Nollert MU (2000) Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 95,1317-1323PubMedGoogle Scholar
  21. Galanakis DK, Ghebrehiwet B (1994) A unique property of a plasma proteoglycan, the C1q inhibitor. An anticoagulant state resulting from its binding to fibrinogen. J Clin Invest 93,303-310PubMedCrossRefGoogle Scholar
  22. Gandhi NS, Mancera RL (2008) The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des 72,455-482PubMedCrossRefGoogle Scholar
  23. Ghebrehiwet B, Galanakis DK (1993) C1q inhibitor (chondroitin-4-sulfate proteoglycan), structure and function. Behring Inst Mitt 214-223Google Scholar
  24. Ghebrehiwet B, Hamburger M (1982) Purification and partial characterization of a C1q inhibitor from the membranes of human peripheral blood lymphocytes. J Immunol 129,157-162PubMedGoogle Scholar
  25. Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis, roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25,5681-5703PubMedCrossRefGoogle Scholar
  26. Gozzo AJ, Nunes VA, Cruz-Silva I, Carmona AK, Nader HB, Faljoni-Alario A, Sampaio MU, Araujo MS (2006) Heparin modulation of human plasma kallikrein on different substrates and inhibitors. Biol Chem 387,1129-1138PubMedCrossRefGoogle Scholar
  27. Gozzo AJ, Nunes VA, Nader HB, Dietrich CP, Carmona AK, Sampaio MU, Sampaio CA, Araujo MS (2003) Glycosaminoglycans affect the interaction of human plasma kallikrein with plasminogen, factor XII and inhibitors. Braz J Med Biol Res 36,1055-1059PubMedCrossRefGoogle Scholar
  28. Greengard JS, Griffin JH (Receptors for high molecular weight kininogen on stimulated washed human platelets. Biochemistry 23,6863-6869.1984).PubMedCrossRefGoogle Scholar
  29. Greengard JS, Heeb MJ, Ersdal E, Walsh PN, Griffin JH (1986) Binding of coagulation factor XI to washed human platelets. Biochemistry 25,3884-3890PubMedCrossRefGoogle Scholar
  30. Grujic M, Braga T, Lukinius A, Eloranta ML, Knight SD, Pejler G, Abrink M (2005) Serglycin-deficient cytotoxic T lymphocytes display defective secretory granule maturation and granzyme B storage. J Biol Chem 280,33411-33418PubMedCrossRefGoogle Scholar
  31. Hagen I (1972) The release of glycosaminoglycans during exposure of human platelets to thrombin and polystyrene latex particles. Biochim Biophys Acta 273,141-148PubMedCrossRefGoogle Scholar
  32. Hamad OA, Ekdahl KN, Nilsson PH, Andersson J, Magotti P, Lambris JD, Nilsson B (2008) Complement activation triggered by chondroitin sulfate released by thrombin receptor-activated platelets. J Thromb Haemost 6,1413-1421PubMedCrossRefGoogle Scholar
  33. Hamad OA, Nilsson PH, Lasaosa M, Ricklin D, Lambris JD, Nilsson B, Ekdahl KN (2010a) Contribution of chondroitin sulfate A to the binding of complement proteins to activated platelets. PLoS One 5,e12889CrossRefGoogle Scholar
  34. Hamad OA, Nilsson PH, Wouters D, Lambris JD, Ekdahl KN, Nilsson B (2010b) Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1. J Immunol 185,2686-2692Google Scholar
  35. Harpel PC, Lewin MF, Kaplan AP (1985) Distribution of plasma kallikrein between C-1 inactivator and alpha 2-macroglobulin in plasma utilizing a new assay for alpha 2-macroglobulin-kallikrein complexes. J Biol Chem 260,4257-4263Google Scholar
  36. He JQ, Wiesmann C, van Lookeren Campagne M (2008) A role of macrophage complement receptor CRIg in immune clearance and inflammation. Mol Immunol 45,4041-4047PubMedCrossRefGoogle Scholar
  37. Heck LW, Kaplan AP (1974) Substrates of Hageman factor. I. Isolation and characterization of human factor XI (PTA) and inhibition of the activated enzyme by alpha 1-antitrypsin. J Exp Med 140,1615-1630Google Scholar
  38. Helmy KY, Katschke KJ, Jr., Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M (2006) CRIg, a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124,915-927Google Scholar
  39. Herwald H, Dedio J, Kellner R, Loos M, Muller-Esterl W (1996) Isolation and characterization of the kininogen-binding protein p33 from endothelial cells. Identity with the gC1q receptor. J Biol Chem 271,13040-13047Google Scholar
  40. Holmer E, Kurachi K, Soderstrom G (1981) The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, factor Xa, factor IXa, factor XIa, factor XIIa and kallikrein by antithrombin. Biochem J 193,395-400Google Scholar
  41. Holmsen H (1989) Physiological functions of platelets. Ann Med 21,23-30Google Scholar
  42. Iatridis PG, Ferguson JH (1965) The Plasmatic Atmosphere of Blood Platelets. Evidence That Only Fibrinogen, Acg, and Activated Hageman Factor Are Present on the Surface of Platelets. Thromb Diath Haemorrh 13,114-125PubMedGoogle Scholar
  43. Iatridis PG, Ferguson JH, Iatridis SG (1964) Surface Factor Mechanisms in Relation to Blood Platelets, Evidence That Activated Hageman Factor Is Present on the Surface of Platelets. Thromb Diath Haemorrh 11,355-371PubMedGoogle Scholar
  44. Johne J, Blume C, Benz PM, Pozgajova M, Ullrich M, Schuh K, Nieswandt B, Walter U, Renne T (2006) Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma. Biol Chem 387,173-178PubMedCrossRefGoogle Scholar
  45. Joseph K, Ghebrehiwet B, Peerschke EI, Reid KB, Kaplan AP (1996) Identification of the zinc-dependent endothelial cell binding protein for high molecular weight kininogen and factor XII, identity with the receptor that binds to the globular “heads” of C1q (gC1q-R). Proc Natl Acad Sci U S A 93,8552-8557PubMedCrossRefGoogle Scholar
  46. Joseph K, Nakazawa Y, Bahou WF, Ghebrehiwet B, Kaplan AP (1999) Platelet glycoprotein Ib, a zinc-dependent binding protein for the heavy chain of high-molecular-weight kininogen. Mol Med 5,555-563Google Scholar
  47. Joseph K, Shibayama Y, Ghebrehiwet B, Kaplan AP (2001) Factor XII-dependent contact activation on endothelial cells and binding proteins gC1qR and cytokeratin 1. Thromb Haemost 85,119-124PubMedGoogle Scholar
  48. Jurk K, Kehrel BE (2005) Platelets, physiology and biochemistry. In, Semin Thromb Hemost, vol. 31, pp 381-392.PubMedCrossRefGoogle Scholar
  49. Kannemeier C, Shibamiya A, Nakazawa F, Trusheim H, Ruppert C, Markart P, Song Y, Tzima E, Kennerknecht E, Niepmann M, von Bruehl ML, Sedding D, Massberg S, Gunther A, Engelmann B, Preissner KT (2007) Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 104,6388-6393Google Scholar
  50. Karpman D, Manea M, Vaziri-Sani F, Stahl AL, Kristoffersson AC (2006) Platelet activation in hemolytic uremic syndrome. Semin Thromb Hemost 32,128-145PubMedCrossRefGoogle Scholar
  51. Kenney DM, Davis AE, 3rd (1981) Association of alternative complement pathway components with human blood platelets, secretion and localization of factor D and beta 1H Globulin. Clin Immunol Immunopathol 21,351-363PubMedCrossRefGoogle Scholar
  52. Kirschfink M, Blase L, Engelmann S, Schwartz-Albiez R (1997) Secreted chondroitin sulfate proteoglycan of human B cell lines binds to the complement protein C1q and inhibits complex formation of C1. J Immunol 158,1324-1331PubMedGoogle Scholar
  53. Kishore U, Leigh LE, Eggleton P, Strong P, Perdikoulis MV, Willis AC, Reid KB (1998) Functional characterization of a recombinant form of the C-terminal, globular head region of the B-chain of human serum complement protein, C1q. Biochem J 333 ( Pt 1),27-32Google Scholar
  54. Kjellén L, Lindahl U (1991) Proteoglycans, structures and interactions. Annu Rev Biochem 60,443-475Google Scholar
  55. Köhl J (2006) The role of complement in danger sensing and transmission. Immunol Res 34,157-176Google Scholar
  56. Kolset SO, Gallagher JT (1990) Proteoglycans in haemopoietic cells. Biochim Biophys Acta 1032,191-211Google Scholar
  57. Kolset SO, Prydz K, Pejler G (2004) Intracellular proteoglycans. Biochem J 379,217-227Google Scholar
  58. Konstantopoulos K, Neelamegham S, Burns AR, Hentzen E, Kansas GS, Snapp KR, Berg EL, Hellums JD, Smith CW, McIntire LV, Simon SI (1998) Venous levels of shear support neutrophil-platelet adhesion and neutrophil aggregation in blood via P-selectin and beta2-integrin. Circulation 98,873-882Google Scholar
  59. Kuijper PH, Gallardo Torres HI, Houben LA, Lammers JW, Zwaginga JJ, Koenderman L (1998) P-selectin and MAC-1 mediate monocyte rolling and adhesion to ECM-bound platelets under flow conditions. In, J Leukoc Biol, vol. 64, pp 467-473.PubMedGoogle Scholar
  60. Lamari FN, Karamanos NK (2006) Structure of chondroitin sulfate. Adv Pharmacol 53,33-48Google Scholar
  61. Lishko VK, Podolnikova NP, Yakubenko VP, Yakovlev S, Medved L, Yadav SP, Ugarova TP (2004) Multiple binding sites in `fibrinogen for integrin alphaMbeta2 (Mac-1). J Biol Chem 279,44897-44906PubMedCrossRefGoogle Scholar
  62. Liszewski MK, Farries TC, Lublin DM, Rooney IA, Atkinson JP (1996) Control of the complement system. Adv Immunol 61,201-283PubMedCrossRefGoogle Scholar
  63. Maas C, Govers-Riemslag JW, Bouma B, Schiks B, Hazenberg BP, Lokhorst HM, Hammarstrom P, ten Cate H, de Groot PG, Bouma BN, Gebbink MF (2008) Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest 118,3208-3218Google Scholar
  64. Mahdi F, Madar ZS, Figueroa CD, Schmaier AH (2002) Factor XII interacts with the multiprotein assembly of urokinase plasminogen activator receptor, gC1qR, and cytokeratin 1 on endothelial cell membranes. Blood 99,3585-3596PubMedCrossRefGoogle Scholar
  65. Margolis J (1958) Activation of plasma by contact with glass, evidence for a common reaction which releases plasma kinin and initiates coagulation. J Physiol 144,1-22PubMedGoogle Scholar
  66. Marquardt L, Anders C, Buggle F, Palm F, Hellstern P, Grau AJ (2009) Leukocyte-platelet aggregates in acute and subacute ischemic stroke. Cerebrovasc Dis 28,276-282PubMedCrossRefGoogle Scholar
  67. McKenzie SE (2002) Humanized mouse models of FcR clearance in immune platelet disorders. Blood Rev 16,3-5PubMedCrossRefGoogle Scholar
  68. Meijers JC, Kanters DH, Vlooswijk RA, van Erp HE, Hessing M, Bouma BN (1988) Inactivation of human plasma kallikrein and factor XIa by protein C inhibitor. Biochemistry 27,4231-4237Google Scholar
  69. Meri S, Jarva H (1998) Complement regulation. Vox Sang 74 Suppl 2,291-302PubMedCrossRefGoogle Scholar
  70. Miller G, Silverberg M, Kaplan AP (1980) Autoactivatability of human hageman factor (factor XII). Biochem Biophys Res Commun 92,803-810Google Scholar
  71. Mnjoyan Z, Li J, Afshar-Kharghan V (2008) Factor H binds to platelet integrin alphaIIbbeta3. Platelets 19,512-519.Google Scholar
  72. Molina H, Holers VM, Li B, Fung Y, Mariathasan S, Goellner J, Strauss-Schoenberger J, Karr RW, Chaplin DD (1996) Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci U S A 93,3357-3361PubMedCrossRefGoogle Scholar
  73. Morgan BP (1992) Isolation and characterization of the complement-inhibiting protein CD59 antigen from platelet membranes. Biochem J 282 ( Pt 2),409-413PubMedGoogle Scholar
  74. Mollnes TE, Brekke OL, Fung M, Fure H, Christiansen D, Bergseth G, Videm V, Lappegard KT, Köhl J, Lambris JD (2002) Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by anovel lepirudin-based human whole blood model of inflammation. Blood 100,1869-1877PubMedGoogle Scholar
  75. Mori K, Nagasawa S (1981) Studies on human high molecular weight (HMW) kininogen. II. Structural change of HMW kininogen by the action of human plasma kallikrein. J Biochem 89,1465-1473Google Scholar
  76. Nicholson-Weller A, March JP, Rosen CE, Spicer DB, Austen KF (1985) Surface membrane expression by human blood leukocytes and platelets of decay-accelerating factor, a regulatory protein of the complement system. Blood 65,1237-1244Google Scholar
  77. Niemann CU, Abrink M, Pejler G, Fischer RL, Christensen EI, Knight SD, Borregaard N (2007) Neutrophil elastase depends on serglycin proteoglycan for localization in granules. Blood 109,4478-4486PubMedCrossRefGoogle Scholar
  78. Nilsson B, Hong J, Larsson R, Elgue G, Ekdahl KN, Sahu A, Lambris, J D (1998) Compstatin inhibits complement and cellular activation in whole blood in models for extracorpereal circulation. Blood 92,1661-1667Google Scholar
  79. Noga O, Brunnee T, Schaper C, Kunkel G (1999) Heparin, derived from the mast cells of human lungs is responsible for the generation of kinins in allergic reactions due to the activation of the contact system. Int Arch Allergy Immunol 120,310-316PubMedCrossRefGoogle Scholar
  80. Okayama M, Oguri K, Fujiwara Y, Nakanishi H, Yonekura H, Kondo T, Ui N (1986) Purification and characterization of human platelet proteoglycan. Biochem J 233,73-81PubMedGoogle Scholar
  81. Olson ST, Sheffer R, Francis AM (1993) High molecular weight kininogen potentiates the heparin-accelerated inhibition of plasma kallikrein by antithrombin, role for antithrombin in the regulation of kallikrein. Biochemistry 32,12136-12147PubMedCrossRefGoogle Scholar
  82. Peerschke EI, Yin W, Ghebrehiwet B (2010) Complement activation on platelets, Implication for vascular infalmmation and thrombosis. Mol Immunol 47,2170-2175PubMedCrossRefGoogle Scholar
  83. Peerschke EI, Yin W, Grigg SE, Ghebrehiwet B (2006) Blood platelets activate the classical pathway of human complement. J Thromb Haemost 4,2035-2042PubMedCrossRefGoogle Scholar
  84. Pixley RA, Schapira M, Colman RW (1985a) Effect of heparin on the inactivation rate of human activated factor XII by antithrombin III. Blood 66,198-203Google Scholar
  85. Pixley RA, Schapira M, Colman RW (1985b) The regulation of human factor XIIa by plasma proteinase inhibitors. J Biol Chem 260,1723-1729Google Scholar
  86. Polley MJ, Nachman R (1978) The human complement system in thrombin-mediated platelet function. J Exp Med 147,1713-1726PubMedCrossRefGoogle Scholar
  87. Rand ML, Leung R, Packham MA (2003) Platelet function assays. Transfus Apheresis Sci 28,307-317Google Scholar
  88. Reddigari SR, Kuna P, Miragliotta G, Shibayama Y, Nishikawa K, Kaplan AP (1993) Human high molecular weight kininogen binds to human umbilical vein endothelial cells via its heavy and light chains. Blood 81,1306-1311PubMedGoogle Scholar
  89. Reilly RF (2003) The pathophysiology of immune-mediated heparin-induced thrombocytopenia. Semin Dial 16,54-60Google Scholar
  90. Revak SD, Cochrane CG, Bouma BN, Griffin JH (1978) Surface and fluid phase activities of two forms of activated Hageman factor produced during contact activation of plasma. J Exp Med 147,719-729PubMedCrossRefGoogle Scholar
  91. Rojkjaer R, Hasan AA, Motta G, Schousboe I, Schmaier AH (1998) Factor XII does not initiate prekallikrein activation on endothelial cells. Thromb Haemost 80,74-81PubMedGoogle Scholar
  92. Rojkjaer R, Schmaier AH (1999) Activation of the plasma kallikrein/kinin system on endothelial cells. Proc Assoc Am Physicians 111,220-227PubMedCrossRefGoogle Scholar
  93. Ruef J, Kuehnl P, Meinertz T, Merten M (2008) The complement factor properdin induces formation of platelet-leukocyte aggregates via leukocyte activation. Platelets 19,359-364PubMedCrossRefGoogle Scholar
  94. Ruggeri ZM, De Marco L, Gatti L, Bader R, Montgomery RR (1983) Platelets have more than one binding site for von Willebrand factor. J Clin Invest 72,1-12PubMedCrossRefGoogle Scholar
  95. Ruiz FA, Lea CR, Oldfield E, Docampo R (2004) Human platelet dense granules contain polyphosphate and are similar to acidocalcisomes of bacteria and unicellular eukaryotes. J Biol Chem 279,44250-44257PubMedCrossRefGoogle Scholar
  96. Saito H, Goldsmith GH, Moroi M, Aoki N (1979) Inhibitory spectrum of alpha 2-plasmin inhibitor. Proc Natl Acad Sci U S A 76,2013-2017PubMedCrossRefGoogle Scholar
  97. Sandvik T, Endresen GK, Forre O (1984) Studies on the binding of complement factor C4 in human platelets. Complement activation by means of cold agglutinins. Int Arch Allergy Appl Immunol 74,152-157PubMedCrossRefGoogle Scholar
  98. Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84,289-297PubMedCrossRefGoogle Scholar
  99. Scarborough RM, Naughton MA, Teng W, Hung DT, Rose J, Vu TK, Wheaton VI, Turck CW, Coughlin SR (1992) Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem 267,13146-13149PubMedGoogle Scholar
  100. Schattner M, Lazzari M, Trevani AS, Malchiodi E, Kempfer AC, Isturiz MA, Geffner JR (1993) Activation of human platelets by immune complexes prepared with cationized human IgG. Blood 82,3045-3051PubMedGoogle Scholar
  101. Schmaier AH (1997) Contact activation, a revision. Thromb Haemost 78,101-107PubMedGoogle Scholar
  102. Schmaier AH (1998) Plasma contact activation, a revised hypothesis. Biol Res 31,251-262PubMedGoogle Scholar
  103. Schmaier AH (2008) Assembly, activation, and physiologic influence of the plasma kallikrein/kinin system. Int Immunopharmacol 8,161-165PubMedCrossRefGoogle Scholar
  104. Schmaier AH, Amenta S, Xiong T, Heda GD, Gewirtz AM (1993) Expression of platelet C1 inhibitor. Blood 82,465-474PubMedGoogle Scholar
  105. Scholz T, Temmler U, Krause S, Heptinstall S, Losche W (2002) Transfer of tissue factor from platelets to monocytes, role of platelet-derived microvesicles and CD62P. Thromb Haemost 88,1033-1038PubMedGoogle Scholar
  106. Schousboe I (1988) In vitro activation of the contact activation system (Hageman factor system) in plasma by acidic phospholipids and the inhibitory effect of beta 2-glycoprotein I on this activation. Int J Biochem 20,309-315PubMedCrossRefGoogle Scholar
  107. Schousboe I (2001) Rapid and cooperative binding of factor XII to human umbilical vein endothelial cells. Eur J Biochem 268,3958-3963PubMedCrossRefGoogle Scholar
  108. Shankar R, de la Motte CA, Poptic EJ, DiCorleto PE (1994) Thrombin receptor-activating peptides differentially stimulate platelet-derived growth factor production, monocytic cell adhesion, and E-selectin expression in human umbilical vein endothelial cells. J Biol Chem 269,13936-13941PubMedGoogle Scholar
  109. Shattil SJ, Newman PJ (2004) Integrins, dynamic scaffolds for adhesion and signaling in platelets. Blood 104,1606-1615PubMedCrossRefGoogle Scholar
  110. Shibayama Y, Reddigari SR, Teruya M, Nakamura K, Fukunaga Y, Ienaga K, Nishikawa K, Suehiro S, Kaplan AP (1998) Effect of neurotropin on the binding of high molecular weight kininogen and Hageman factor to human umbilical vein endothelial cells and the autoactivation of bound Hageman factor. Biochem Pharmacol 55,1175-1180PubMedCrossRefGoogle Scholar
  111. Siddiqui FA, Desai H, Amirkhosravi A, Amaya M, Francis JL (2002) The presence and release of tissue factor from human platelets. Platelets 13,247-253PubMedCrossRefGoogle Scholar
  112. Silvestri L, Baker JR, Roden L, Stroud RM (1981) The C1q inhibitor in serum is a chondroitin 4-sulfate proteoglycan. J Biol Chem 256,7383-7387Google Scholar
  113. Sims PJ, Rollins SA, Wiedmer T (1989) Regulatory control of complement on blood platelets. Modulation of platelet procoagulant responses by a membrane inhibitor of the C5b-9 complex. J Biol Chem 264,19228-19235Google Scholar
  114. Sims PJ, Wiedmer T (1991) The response of human platelets to activated components of the complement system. Immunol Today 12,338-342PubMedCrossRefGoogle Scholar
  115. Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH (2006) Polyphosphate modulates blood coagulation and fibrinolysis. Proc Natl Acad Sci U S A 103,903-908Google Scholar
  116. Stahl AL, Vaziri-Sani F, Heinen S, Kristoffersson AC, Gydell KH, Raafat R, Gutierrez A, Beringer O, Zipfel PF, Karpman D (2008) Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood 111,5307-5315PubMedCrossRefGoogle Scholar
  117. Sunyer J, Lambris JD (2001) Complement. Encyclopeida of Life Science 1-9Google Scholar
  118. Torzewski J, Bowyer DE, Waltenberger J, Fitzsimmons C (1997) Processes in atherogenesis, complement activation. Atherosclerosis 132,131-138PubMedCrossRefGoogle Scholar
  119. Tschopp J, Jenne DE, Hertig S, Preissner KT, Morgenstern H, Sapino AP, French L (1993) Human megakaryocytes express clusterin and package it without apolipoprotein A-1 into alpha-granules. Blood 82,118-125PubMedGoogle Scholar
  120. Uhlin-Hansen L, Eskeland T, Kolset SO (1989) Modulation of the expression of chondroitin sulfate proteoglycan in stimulated human monocytes. J Biol Chem 264,14916-14922PubMedGoogle Scholar
  121. Van Der Graaf F, Koedam JA, Bouma BN (1983) Inactivation of kallikrein in human plasma. J Clin Invest 71,149-158PubMedCrossRefGoogle Scholar
  122. Vaziri-Sani F, Hellwage J, Zipfel PF, Sjoholm AG, Iancu R, Karpman D (2005) Factor H binds to washed human platelets. J Thromb Haemost 3,154-162PubMedCrossRefGoogle Scholar
  123. Waaler BA (1959) Contact activation in the intrinsic blood clotting system; studies on a plasma product formed on contact with glass and similar surfaces. Scand J Clin Lab Invest 11,1-133Google Scholar
  124. Walsh PN, Griffin JH (1981a) Contributions of human platelets to the proteolytic activation of blood coagulation factors XII and XI. Blood 57,106-118Google Scholar
  125. Walsh PN, Griffin JH (1981b) Platelet-coagulant protein interactions in contact activation. Ann N Y Acad Sci 370,241-252CrossRefGoogle Scholar
  126. Ward JV, Packham MA (1979) Characterization of the sulfated glycosaminoglycan on the surface and in the storage granules of rabbit platelets. Biochim Biophys Acta 583,196-207PubMedCrossRefGoogle Scholar
  127. Wiedmer T, Hall SE, Ortel TL, Kane WH, Rosse WF, Sims PJ (1993) Complement-induced vesiculation and exposure of membrane prothrombinase sites in platelets of paroxysmal nocturnal hemoglobinuria. Blood 82,1192-1196PubMedGoogle Scholar
  128. Woulfe DS, Lilliendahl JK, August S, Rauova L, Kowalska MA, Abrink M, Pejler G, White JG, Schick BP (2008) Serglycin proteoglycan deletion induces defects in platelet aggregation and thrombus formation in mice. Blood 111,3458-3467PubMedCrossRefGoogle Scholar
  129. Wuillemin WA, Eldering E, Citarella F, de Ruig CP, ten Cate H, Hack CE (1996) Modulation of contact system proteases by glycosaminoglycans. Selective enhancement of the inhibition of factor XIa. J Biol Chem 271,12913-12918PubMedCrossRefGoogle Scholar
  130. Wuillemin WA, Minnema M, Meijers JC, Roem D, Eerenberg AJ, Nuijens JH, ten Cate H, Hack CE (1995) Inactivation of factor XIa in human plasma assessed by measuring factor XIa-protease inhibitor complexes, major role for C1-inhibitor. Blood 85,1517-1526PubMedGoogle Scholar
  131. Yu GH, Holers VM, Seya T, Ballard L, Atkinson JP (1986) Identification of a third component of complement-binding glycoprotein of human platelets. J Clin Invest 78,494-501PubMedCrossRefGoogle Scholar
  132. Zarbock A, Muller H, Kuwano Y, Ley K (2009) PSGL-1-dependent myeloid leukocyte activation. J Leukoc Biol 86,1119-1124PubMedCrossRefGoogle Scholar
  133. Zhang SZ, Jin YP, Qin GM, Wang JH (2007) Association of platelet-monocyte aggregates with platelet activation, systemic inflammation, and myocardial injury in patients with non-st elevation acute coronary syndromes. Clin Cardiol 30,26-31PubMedCrossRefGoogle Scholar
  134. Zhao L, Bath PM, May J, Losche W, Heptinstall S (2003) P-selectin, tissue factor and CD40 ligand expression on platelet-leucocyte conjugates in the presence of a GPIIb/IIIa antagonist. Platelets 14,473-480PubMedCrossRefGoogle Scholar
  135. Zipfel PF, Skerka C (2009) Complement regulators and inhibitory proteins. Nat Rev Immunol 9,729-740PubMedGoogle Scholar
  136. Zipfel PF, Skerka C, Caprioli J, Manuelian T, Neumann HH, Noris M, Remuzzi G (2001) Complement factor H and hemolytic uremic syndrome. Int Immunopharmacol 1,461-468PubMedCrossRefGoogle Scholar
  137. Zwaal RF, Comfurius P, Bevers EM (1998) Lipid-protein interactions in blood coagulation. Biochim Biophys Acta 1376,433-453PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Osama A. Hamad
    • 1
  • Jennie Bäck
    • 1
  • Per H. Nilsson
    • 2
  • Bo Nilsson
    • 1
  • Kristina N. Ekdahl
    • 1
    Email author
  1. 1.Dept of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3Uppsala UniversityUppsalaSweden
  2. 2.School of Natural SciencesLinnæus UniversityKalmarSweden

Personalised recommendations