Skip to main content

Simulating Therapeutics Using Multiscale Models of the VEGF Receptor System in Cancer

  • Chapter
  • First Online:
  • 895 Accesses

Abstract

In recent years, Judah Folkman’s vision of anticancer therapeutics based on inhibiting angiogenesis pathways has begun to be realized. In particular, antibodies sequestering VEGF, and small molecule tyrosine kinase inhibitors targeting VEGF receptors, are now approved for various cancers, alone or in combination with other therapies. More are in the development pipeline, with similar or distinct mechanisms of action. The VEGF system is complex, involving multiple ligands and receptors, along with transport throughout the body via the bloodstream. Predicting outcomes of perturbing this system, either by a single agent or combinations, can be aided by in silico models. Here we discuss the ways in which the above drugs target the VEGF pathway in cancer, and describe the development and implementation of multiscale mathematical models to simulate the action of these drugs in order to predict and compare their likely efficacy for various types of tumors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, A.R. and V. Quaranta, Integrative mathematical oncology. Nat Rev Cancer, 2008. 8(3): p. 227–34.

    CAS  PubMed  Google Scholar 

  • Arakelyan, L., et al., Multi-scale analysis of angiogenic dynamics and therapy. In Cancer modeling and simulation, ed. L. Preziosi. 2003, LLC (UK): CRC Press. 185–219.

    Google Scholar 

  • Autiero, M., et al., Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med, 2003. 9(7): p. 936–43.

    CAS  PubMed  Google Scholar 

  • Bais, C., et al., PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell, 2010. 141(1): p. 166–77.

    CAS  PubMed  Google Scholar 

  • Barr, M.P., et al., A peptide corresponding to the neuropilin-1-binding site on VEGF(165) induces apoptosis of neuropilin-1-expressing breast tumour cells. Br J Cancer, 2005. 92(2): p. 328–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer, A.L., T.L. Jackson, and Y. Jiang, A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys J, 2007. 92(9): p. 3105–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley, K., H. Gerhardt, and P.A. Bates, Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol, 2008. 250(1): p. 25–36.

    CAS  PubMed  Google Scholar 

  • Bentley, K., et al., Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput Biol, 2009. 5(10): e1000549.

    PubMed  PubMed Central  Google Scholar 

  • Billy, F., et al., A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J Theor Biol, 2009. 260(4): p. 545–62.

    CAS  PubMed  Google Scholar 

  • Bock, F., et al., Blockade of VEGFR3-signalling specifically inhibits lymphangiogenesis in inflammatory corneal neovascularisation. Graefes Arch Clin Exp Ophthalmol, 2008. 246(1): p. 115–9.

    CAS  PubMed  Google Scholar 

  • Byrne, H.M., Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer, 2010. 10(3): p. 221–30.

    CAS  PubMed  Google Scholar 

  • Chaplain, M.A., S.R. McDougall, and A.R. Anderson, Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng, 2006. 8: p. 233–57.

    CAS  PubMed  Google Scholar 

  • Das, A., et al., A hybrid continuum-discrete modeling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Philos Transact A Math Phys Eng Sci, 2010. 368(1921): p. 2937–60.

    CAS  Google Scholar 

  • Dixelius, J., et al., Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem, 2003. 278(42): p. 40973–9.

    CAS  PubMed  Google Scholar 

  • d’Onofrio, A. and A. Gandolfi, Chemotherapy of vascularised tumours: role of vessel density and the effect of vascular “pruning”. J Theor Biol, 2010. 264(2): p. 253–65.

    PubMed  Google Scholar 

  • Dvorak, H.F., Discovery of vascular permeability factor (VPF). Exp Cell Res, 2006. 312(5): p. 522–6.

    CAS  PubMed  Google Scholar 

  • Edelman, L.B., J.A. Eddy, and N.D. Price, In silico models of cancer. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010. 2(4): p. 438–9.

    CAS  PubMed  Google Scholar 

  • Ellis, L.M., The role of neuropilins in cancer. Mol Cancer Ther, 2006. 5(5): p. 1099–107.

    CAS  PubMed  Google Scholar 

  • Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Nat Med, 2003. 9(6): p. 669–76.

    CAS  PubMed  Google Scholar 

  • Ferrara, N., Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev, 2004. 25(4): p. 581–611.

    CAS  PubMed  Google Scholar 

  • Filion, R.J. and A.S. Popel, A reaction-diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann Biomed Eng, 2004. 32(5): p. 645–63.

    PubMed  Google Scholar 

  • Fischer, C., et al., Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell, 2007. 131(3): p. 463–75.

    CAS  PubMed  Google Scholar 

  • Fischer, C., et al., FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer, 2008. 8(12): p. 942–56.

    CAS  PubMed  Google Scholar 

  • Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182–6.

    CAS  PubMed  Google Scholar 

  • Forsten-Williams, K., et al., Control of growth factor networks by heparan sulfate proteoglycans. Ann Biomed Eng, 2008. 36(12): p. 2134–48.

    PubMed  PubMed Central  Google Scholar 

  • Frieboes, H.B., et al., Three-dimensional multispecies nonlinear tumor growth-II: Tumor invasion and angiogenesis. J Theor Biol, 2010. 264(4): p. 1254–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukumura, D. and R.K. Jain, Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem, 2007. 101(4): p. 937–49.

    CAS  PubMed  Google Scholar 

  • Gaur, P., et al., Role of class 3 semaphorins and their receptors in tumor growth and angiogenesis. Clin Cancer Res, 2009. 15(22): p. 6763–70.

    CAS  PubMed  Google Scholar 

  • Gaur, P., et al., Targeting tumor angiogenesis. Semin Oncol, 2009. 36(2 Suppl 1): p. S12–9.

    CAS  PubMed  Google Scholar 

  • Geretti, E. and M. Klagsbrun, Neuropilins: novel targets for anti-angiogenesis therapies. Cell Adh Migr, 2007. 1(2): p. 56–61.

    PubMed  PubMed Central  Google Scholar 

  • Geretti, E., A. Shimizu, and M. Klagsbrun, Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis, 2008. 11(1): p. 31–9.

    CAS  PubMed  Google Scholar 

  • Gluzman-Poltorak, Z., et al., Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165. J Biol Chem, 2000. 275(24): p. 18040–5.

    CAS  PubMed  Google Scholar 

  • Gordon, M.S., et al., Phase I safety and pharmacokinetic study of recombinant human anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol, 2001. 19(3): p. 843–50.

    CAS  PubMed  Google Scholar 

  • Gorelik, B., et al., Efficacy of weekly docetaxel and bevacizumab in mesenchymal chondrosarcoma: a new theranostic method combining xenografted biopsies with a mathematical model. Cancer Res, 2008. 68(21): p. 9033–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori, K., et al., Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med, 2002. 8(8): p. 841–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holash, J., et al., VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A, 2002. 99(17): p. 11393–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, J.Y. and H.A. Wakelee, Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. BioDrugs, 2009. 23(5): p. 289–304.

    CAS  PubMed  Google Scholar 

  • Jain, R.K. and B.T. Fenton, Intratumoral lymphatic vessels: a case of mistaken identity or malfunction? J Natl Cancer Inst, 2002. 94(6): p. 417–21.

    PubMed  Google Scholar 

  • Jain, H.V., J.E. Nor, and T.L. Jackson, Quantification of endothelial cell-targeted anti-Bcl-2 therapy and its suppression of tumor growth and vascularization. Mol Cancer Ther, 2009. 8(10): p. 2926–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson, L., K. Bentley, and H. Gerhardt, VEGFRs and Notch: a dynamic collaboration in vascular patterning. Biochem Soc Trans, 2009. 37(Pt 6): p. 1233–6.

    CAS  PubMed  Google Scholar 

  • Jayson, G.C., et al., Molecular imaging and biological evaluation of HuMV833 anti-VEGF antibody: implications for trial design of antiangiogenic antibodies. J Natl Cancer Inst, 2002. 94(19): p. 1484–93.

    CAS  PubMed  Google Scholar 

  • Jayson, G.C., et al., Phase I investigation of recombinant anti-human vascular endothelial growth factor antibody in patients with advanced cancer. Eur J Cancer, 2005. 41(4): p. 555–63.

    CAS  PubMed  Google Scholar 

  • Ji, R.C., Lymphatic endothelial cells, tumor lymphangiogenesis and metastasis: New insights into intratumoral and peritumoral lymphatics. Cancer Metastasis Rev, 2006. 25(4): p. 677–94.

    PubMed  Google Scholar 

  • Jimenez, X., et al., A recombinant, fully human, bispecific antibody neutralizes the biological activities mediated by both vascular endothelial growth factor receptors 2 and 3. Mol Cancer Ther, 2005. 4(3): p. 427–34.

    CAS  PubMed  Google Scholar 

  • Karagiannis, E.D. and A.S. Popel, A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2. J Biol Chem, 2004. 279(37): p. 39105–14.

    CAS  PubMed  Google Scholar 

  • Karagiannis, E.D. and A.S. Popel, Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J Theor Biol, 2006. 238(1): p. 124–45.

    CAS  PubMed  Google Scholar 

  • Kolodkin, A.L., et al., Neuropilin is a semaphorin III receptor. Cell, 1997. 90(4): p. 753–62.

    CAS  PubMed  Google Scholar 

  • Krupitskaya, Y. and H.A. Wakelee, Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Curr Opin Investig Drugs, 2009. 10(6): p. 597–605.

    CAS  PubMed  Google Scholar 

  • Kut, C., F. Mac Gabhann, and A.S. Popel, Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br J Cancer, 2007. 97(7): p. 978–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laubenbacher, R., et al., A systems biology view of cancer. Biochim Biophys Acta, 2009. 1796(2): p. 129–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y.C., The involvement of VEGF in endothelial permeability: a target for anti-inflammatory therapy. Curr Opin Investig Drugs, 2005. 6(11): p. 1124–30.

    CAS  PubMed  Google Scholar 

  • Leung, D.W., et al., Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 1989. 246(4935): p. 1306–9.

    CAS  PubMed  Google Scholar 

  • Levine, H.A., et al., Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull Math Biol, 2001. 63(5): p. 801–63.

    CAS  PubMed  Google Scholar 

  • Lockhart, A.C., et al., Phase I study of intravenous vascular endothelial growth factor trap, aflibercept, in patients with advanced solid tumors. J Clin Oncol, 2010. 28(2): p. 207–14.

    CAS  PubMed  Google Scholar 

  • Lyons, J.M., 3rd, et al., The role of VEGF pathways in human physiologic and pathologic angiogenesis. J Surg Res, 2010. 159(1): p. 517–27.

    CAS  PubMed  Google Scholar 

  • Mac Gabhann, F. and A.S. Popel, Systems biology of vascular endothelial growth factors. Microcirculation, 2008. 15(8): p. 715–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mac Gabhann, F. and A.S. Popel, Targeting neuropilin-1 to inhibit VEGF signaling in cancer: Comparison of therapeutic approaches. PLoS Comput Biol, 2006. 2(12): p. e180.

    PubMed  Google Scholar 

  • Mac Gabhann, F. and A.S. Popel, Dimerization of VEGF receptors and implications for signal transduction: a computational study. Biophys Chem, 2007. 128(2–3): p. 125–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macklin, P., et al., Multiscale modeling and nonlinear simulation of vascular tumour growth. J Math Biol, 2009. 58(4–5): p. 765–98.

    PubMed  Google Scholar 

  • Milde, F., M. Bergdorf, and P. Koumoutsakos, A hybrid model for three-dimensional simulations of sprouting angiogenesis. Biophys J, 2008. 95(7): p. 3146–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy, J.A., et al., Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer, 2009. 100(6): p. 865–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy, J.A., A.M. Dvorak, and H.F. Dvorak, VEGF-A and the induction of pathological angiogenesis. Annu Rev Pathol, 2007. 2: p. 251–75.

    CAS  PubMed  Google Scholar 

  • Neufeld, G., O. Kessler, and Y. Herzog, The interaction of Neuropilin-1 and Neuropilin-2 with tyrosine-kinase receptors for VEGF. Adv Exp Med Biol, 2002. 515: p. 81–90.

    CAS  PubMed  Google Scholar 

  • Nilsson, I., et al., VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J, 2010. 29(8): p. 1377–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson, I., et al., Vascular endothelial growth factor receptor-3 in hypoxia-induced vascular development. Faseb J, 2004. 18(13): p. 1507–15.

    CAS  PubMed  Google Scholar 

  • Noguera-Troise, I., et al., Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature, 2006. 444(7122): p. 1032–7.

    CAS  PubMed  Google Scholar 

  • Owen, M.R., et al.,Angiogenesis and vascular remodelling in normal and cancerous tissues. J Math Biol, 2009. 58(4–5): p. 689–721.

    PubMed  Google Scholar 

  • Pan, Q., et al., Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting. J Biol Chem, 2007. 282(33): p. 24049–56.

    CAS  PubMed  Google Scholar 

  • Park, C.S., I.C. Schneider, and J.M. Haugh, Kinetic analysis of platelet-derived growth factor receptor/phosphoinositide 3-kinase/Akt signaling in fibroblasts. J Biol Chem, 2003. 278(39): p. 37064–72.

    CAS  PubMed  Google Scholar 

  • Peirce, S.M., Computational and mathematical modeling of angiogenesis. Microcirculation, 2008. 15(8): p. 739–51.

    PubMed  PubMed Central  Google Scholar 

  • Popel, A.S. and P.J. Hunter, Systems biology and Physiome projects. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009. 1: p. 153–8.

    PubMed  Google Scholar 

  • Qutub, A.A. and A.S. Popel, Reactive oxygen species regulate hypoxia-inducible factor 1alpha differentially in cancer and ischemia. Mol Cell Biol, 2008. 28(16): p. 5106–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qutub, A.A. and A.S. Popel, Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst Biol, 2009. 3: 13.

    PubMed  PubMed Central  Google Scholar 

  • Qutub, A.A., et al., Multiscale models of angiogenesis. IEEE Eng Med Biol Mag, 2009. 28(2): p. 14–31.

    PubMed  PubMed Central  Google Scholar 

  • Qutub, A.A., et al., In silico modeling of angiogenesis at multiple scales: From nanoscale to organ system, in Multiscale Modeling of Particle Interactions: Applications in Biology and Nanotechnology, M.R. King and D.J. Gee, Editors. 2010, Wiley. p. 287–320.

    Google Scholar 

  • Ridgway, J., et al., Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature, 2006. 444(7122): p. 1083–7.

    CAS  PubMed  Google Scholar 

  • Rizzolio, S. and L. Tamagnone, Semaphorin signals on the road to cancer invasion and metastasis. Cell Adh Migr, 2007. 1(2): p. 62–8.

    PubMed  PubMed Central  Google Scholar 

  • Robinson, C.J. and S.E. Stringer, The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci, 2001. 114(Pt 5): p. 853–65.

    CAS  PubMed  Google Scholar 

  • Schwartz, J.D., et al., Vascular endothelial growth factor receptor-1 in human cancer: concise review and rationale for development of IMC-18F1 (Human antibody targeting vascular endothelial growth factor receptor-1). Cancer, 2010. 116(4 Suppl): p. 1027–32.

    CAS  PubMed  Google Scholar 

  • Segerstrom, L., et al., The anti-VEGF antibody bevacizumab potently reduces the growth rate of high-risk neuroblastoma xenografts. Pediatr Res, 2006. 60(5): p. 576–81.

    PubMed  Google Scholar 

  • Shibuya, M., Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol, 2006. 39(5): p. 469–78.

    CAS  PubMed  Google Scholar 

  • Shibuya, M. and L. Claesson-Welsh, Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res, 2006. 312(5): p. 549–60.

    CAS  PubMed  Google Scholar 

  • Shraga-Heled, N., et al., Neuropilin-1 and neuropilin-2 enhance VEGF121 stimulated signal transduction by the VEGFR-2 receptor. FASEB J, 2007. 21(3): p. 915–26.

    CAS  PubMed  Google Scholar 

  • Small, A.R., et al., Spatial distribution of VEGF isoforms and chemotactic signals in the vicinity of a tumor. J Theor Biol, 2008. 252(4): p. 593–607.

    CAS  PubMed  Google Scholar 

  • Soker, S., et al., VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem, 2002. 85(2): p. 357–68.

    CAS  PubMed  Google Scholar 

  • Spratlin, J.L., et al., Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol, 2010. 28(5): p. 780–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanini, M.O., et al., A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst Biol, 2008. 2: 77.

    PubMed  PubMed Central  Google Scholar 

  • Stefanini, M.O., et al., The increase of plasma vascular endothelial growth factor following the intravenous administration of bevacizumab predicted by a pharmacokinetic model. Cancer Res, 2010. 70(23): 9886–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanini, M.O., et al., Computational models of VEGF-associated angiogenic processes in cancer. Math Med Biol, 2011, to appear.

    Google Scholar 

  • Suchting, S., et al., The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A, 2007. 104(9): p. 3225–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, S., et al., A deterministic model of growth factor-induced angiogenesis. Bull Math Biol, 2005. 67(2): p. 313–37.

    CAS  PubMed  Google Scholar 

  • Takahashi, H. and M. Shibuya, The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond), 2005. 109(3): p. 227–41.

    CAS  PubMed  Google Scholar 

  • Tammela, T., et al., Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature, 2008. 454(7204): p. 656–60.

    CAS  PubMed  Google Scholar 

  • Tammela, T. and K. Alitalo, Lymphangiogenesis: Molecular mechanisms and future promise. Cell, 2010. 140(4): p. 460–76.

    CAS  PubMed  Google Scholar 

  • Tew, W.P., et al., Phase 1 study of aflibercept administered subcutaneously to patients with advanced solid tumors. Clin Cancer Res, 2010. 16(1): p. 358–66.

    CAS  PubMed  Google Scholar 

  • Van de Veire, S., et al., Further pharmacological and genetic evidence for the efficacy of PlGF inhibition in cancer and eye disease. Cell, 2010. 141(1): p. 178–90.

    PubMed  Google Scholar 

  • von Wronski, M.A., et al., Tuftsin binds neuropilin-1 through a sequence similar to that encoded by exon 8 of vascular endothelial growth factor. J Biol Chem, 2006. 281(9): p. 5702–10.

    Google Scholar 

  • Vempati, P., E.D. Karagiannis, and A.S. Popel, A biochemical model of matrix metalloproteinase 9 activation and inhibition. J Biol Chem, 2007. 282(52): p. 37585–96.

    CAS  PubMed  Google Scholar 

  • Vempati, P., F. Mac Gabhann, and A.S. Popel, Quantifying the proteolytic release of extracellular matrix-sequestered VEGF with a computational model. PLoS One, 2010. 5(7): e11860.

    Google Scholar 

  • Witte, L., et al., Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev, 1998. 17(2): p. 155–61.

    CAS  PubMed  Google Scholar 

  • Wu, Y., et al., Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer. Clin Cancer Res, 2006. 12(21): p. 6573–84.

    CAS  PubMed  Google Scholar 

  • Wu, F.T., et al., Modeling of growth factor-receptor systems from molecular-level protein interaction networks to whole-body compartment models. Methods Enzymol, 2009. 467: p. 461–497.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., et al., Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol, 2010. 188(1): p. 115–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, J.C., et al., A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med, 2003. 349(5): p. 427–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Youssoufian, H., D.J. Hicklin, and E.K. Rowinsky, Review: monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy. Clin Cancer Res, 2007. 13(18 Pt 2): p. 5544s–5548s.

    CAS  PubMed  Google Scholar 

  • Zhang, F., et al., VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci U S A, 2009. 106(15): p. 6152–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander S. Popel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gabhann, F.M., Stefanini, M.O., Popel, A.S. (2012). Simulating Therapeutics Using Multiscale Models of the VEGF Receptor System in Cancer. In: Jackson, T.L. (eds) Modeling Tumor Vasculature. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0052-3_2

Download citation

Publish with us

Policies and ethics