Dietary Protein, Metabolic Acidosis, and Calcium Balance

  • John T. Brosnan
  • Margaret E. Brosnan
Part of the Advances in Nutritional Research book series (ANUR, volume 4)


A very large number of metabolic reactions that produce or remove hydrogen ions occur in the body. However, in the great majority of these, the production and removal of protons are merely intermediary steps in processes that are essentially neutral. A ready example comes from the production and utilization of ATP in cells. ATP hydrolysis in cells produces a proton.


Metabolic Acidosis Protein Intake Acid Load Urinary Calcium Excretion Calcium Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, N. D., Gray, R. W., and Lemann, J., Jr., 1979, The calciuria of increased fixed acid production in humans: Evidence against a role for parathyroid hormone and 1,25(OH)2-vitamin D, Calcif. Tissue Int. 28:233.PubMedCrossRefGoogle Scholar
  2. Adler, S., Lindeman, R. D., Yiengst, M. J., Beard, E., and Schock, N. W., 1968, Effect of acute acid loading on urinary acid excretion by the aging human kidney, J. Lab. Clin. Med. 72:278.PubMedGoogle Scholar
  3. Adolph, W. H., and Chen, S. C., 1932, The utilization of calcium in soya bean diets, J. Nutr. 5:379.Google Scholar
  4. Albright, F., and Reifenstein, E. C., 1948, The Parathyroid Glands and Metabolic Bone Disease, Williams & Wilkins, Baltimore.Google Scholar
  5. Allen, L. H., and Hall, T. E., 1978. Calcium metabolism, intestinal calcium-binding protein, and bone growth of rats fed high protein diets, J. Nutr. 108:967.PubMedGoogle Scholar
  6. Allen, L. H., Bartlett, R. S., and Block, G. D., 1979a, Reduction of renal calcium in man by consumption of dietary protein, J. Nutr. 109:1345.Google Scholar
  7. Allen, L. H., Oddoye, E. A., and Margen, S., 1979b, Protein-induced hypercalciuria: A longer term study, Am. J. Clin. Nutr. 32:741.Google Scholar
  8. Alleyne, G. A. O., and Scullard, G. H., 1969, Renal metabolic response to acid-base changes. I. Enzymatic control of ammoniagenesis in the rat, J. Clin. Invest. 48:364.PubMedCrossRefGoogle Scholar
  9. Anand, C. R., and Linkswiler, H. M., 1974, Effect of protein intake on calcium balance of young men given 500 mg calcium daily, J. Nutr. 104:695.PubMedGoogle Scholar
  10. Barzel, U. S., 1969, The effect of excessive acid feeding on bone, Calcif. Tissue Res. 4:94.PubMedCrossRefGoogle Scholar
  11. Barzel, U. S., 1975, Studies in osteoporosis: The long-term effect of oophorectomy and of ammonium chloride ingestion on the bone of mature rats, Endocrinology 96:1304.PubMedCrossRefGoogle Scholar
  12. Barzel, U. S., and Jowsey, J., 1969, The effects of chronic acid and alkali administration on bone turnover in adult rats, Clin Sci. 36:517.PubMedGoogle Scholar
  13. Beck, N., and Webster, S. H., 1976, Effects of acute metabolic acidosis on parathyroid hormone action and calcium mobilization, Am. J. Physiol. 230:127.PubMedGoogle Scholar
  14. Bell, R. R., Engelman, D. T., Sie, T. L., and Draper, H. H., 1975, Effect of a high protein intake on calcium metabolism in the rat, J. Nutr. 105:475.PubMedGoogle Scholar
  15. Bergstrom W. H., and Wallace, W. M., 1954, Bone as a sodium and potassium reservoir, J. Clin. Invest. 33:867.PubMedCrossRefGoogle Scholar
  16. Bernard, C., 1865, An Introduction to the Study of Experimental Medicine, translated by H. C. Green, p. 152–153, Dover Publications, New York, 1957.Google Scholar
  17. Bode, A. B., 1973, Calcium metabolism at the cellular level, Fed. Proc. 32:1944Google Scholar
  18. Borle, A. B., 1978, Renal handling of calcium, Fed. Proc. 37:2112.Google Scholar
  19. Brosnan, J. T., and Hall, B., 1977, The transport and metabolism of glutamine by kidney cortex mitochondria from normal and acidotic rats, Biochem. J. 164:331.PubMedGoogle Scholar
  20. Brosnan, J. T., McPhee, P., Hall, B., and Parry, D. M., 1978, Renal glutamine metabolism in rats fed high-protein diets, Am. J. Physiol. 235:E261.PubMedGoogle Scholar
  21. Brumbaugh, P. F., Hughes, M. R., and Haussier, M. R., 1975, Cytoplasmic and nuclear binding components for 1α,25-Dihydroxyvitamin D3 in chick parathyroid glands, Proc. Natl. Acad. Sci. U.S.A. 72:4871.PubMedCrossRefGoogle Scholar
  22. Burnell, J. M., 1971, Changes in bone sodium and carbonate in metabolic acidosis and alkalosis in the dog, J. Clin. Invest. 50:327.PubMedCrossRefGoogle Scholar
  23. Chu, J. -Y., Margen, S., and Costa, F. M., 1975, Studies in calcium metabolism. II. Effects of low calcium and variable protein intake on human calcium metabolism, Am. J. Clin. Nutr. 28: 1028.PubMedGoogle Scholar
  24. Cochran, M., and Wilkinson, R., 1975, Effect of correction of metabolic acidosis on bone mineralisation rates in patients with renal osteomalacia, Nephron 15:98.PubMedCrossRefGoogle Scholar
  25. Coe, F. L., Firpo, J. J., Jr., Hollandsworth, D. L., Segil, L., Canterbury, J. M., and Reiss, E., 1975, Effect of acute and chronic metabolic acidosis on serum immunoreactive parathyroid hormone in man, Kidney Int. 8:262.CrossRefGoogle Scholar
  26. Cooper, C. W., Bolma, R. M. III, Linehan, W. M., and Wells, S. A., Jr., 1978, Interrelationships between calcium, calcemic hormones and gastrointestinal hormones, Recent Prog. Horm. Res. 34:259.PubMedGoogle Scholar
  27. Delling, G., and Dornath, K., 1973, Morphometrische, elektronenmikroskopische und physikelisch-chemisch Untersuchungen uber die experimentell Osteoporose bei chronischer Acidose. Virchows Arch. Pathol Anat. 358:321.CrossRefGoogle Scholar
  28. DeLuca, H. F., 1979, The vitamin D system in the regulation of calcium and phosphorus metabolism, Nutr. Rev. 37:161.PubMedCrossRefGoogle Scholar
  29. DeSousa, R. C., Harrington, J. T., Ricanati, E. S., Shelkrot, J. W., and Schwartz, W. B., 1974, Renal regulation of acid-base equilibrium during chronic administration of mineral acid, J. Clin. Invest. 53:465.CrossRefGoogle Scholar
  30. Draper, H. H., and Bell, R. R., 1979, Nutrition and osteoporosis, in: Advances in Nutritional Research, Vol. 2 (H. H. Draper, ed.), pp. 79–106, Plenum Press, New York.Google Scholar
  31. Ellis, F. R., Holesh, S., and Ellis, J. W., 1972, Incidence of osteoporosis in vegetarians and omnivores, Am. J. Clin. Nutr. 25:555.PubMedGoogle Scholar
  32. Ellis, F. R., Holesh, S., and Sanders, T. A. B., 1974, Osteoporosis in British vegetarians and omnivores, Am. J. Clin. Nutr. 27:769.Google Scholar
  33. Epstein, F., 1968, Calcium and the kidney, Am. J. Med. 45:700.PubMedCrossRefGoogle Scholar
  34. Erecinska, M., and Wilson, D. F., 1978, Homeostatic regulation of cellular energy metabolism, Trends Biochem. Sci. 3:219.CrossRefGoogle Scholar
  35. Fraley, D. S., and Adler, S., 1979, An extrarenal role for parathyroid hormone in the disposal of acute acid loads in rats and dogs, J. Clin. Invest. 63:985.PubMedCrossRefGoogle Scholar
  36. Garabedian, M., Holick, M. F., DeLuca, H. F., and Boyle, I. T., 1972, Control of 25-hydroxycholecalciferol metabolism by parathyroid glands, Proc. Natl. Acad. Sci. U.S.A. 69:1673.PubMedCrossRefGoogle Scholar
  37. Glabman, S., Klose, R. M., and Giebisch, G., 1963, Micropuncture study of ammonia excretion in the rat, Am. J. Physiol. 205:127.PubMedGoogle Scholar
  38. Goodman, A. D., Lemann, J., Lennon, E. J., and Relman, A. S., 1965, Production, excretion and net balance of fixed acid in patients with renal acidosis, J. Clin. Invest. 44:495.PubMedCrossRefGoogle Scholar
  39. Goodman, A. D., Fuisz, R. F., and Cahill, G. F., Jr., 1966, Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: Its possible role in regulation of renal ammonia production, J. Clin. Invest. 45:612.PubMedCrossRefGoogle Scholar
  40. Haldane, J. B. S., 1921, Experiments on the regulation of the blood’s alkalinity. II. J. Physiol. (Lond.) 55:265.Google Scholar
  41. Ham, A. W., 1974, Histology, J. B. Lippincott, Toronto.Google Scholar
  42. Haussier, M. R., and McCain, T. A., 1977, Basic and clinical concepts related to vitamin D metabolism and action, N. Engl. J. Med. 297:974.CrossRefGoogle Scholar
  43. Hughes, M. R., Brumbaugh, P. F., Hausser, M. R., Wergedal, J. E., and Baylink, D. J., 1975, Regulation of serum 1α,25-Dihydroxyvitamin D3 by calcium and phosphate in the rat, Science 190:578.PubMedCrossRefGoogle Scholar
  44. Hunt, J. N., 1956, The influence of dietary sulfur on the urinary output of acid in man, Clin. Sci. 5:119.Google Scholar
  45. Irving, L., and Chute, A. L., 1933, The participation of the carbonates of bone in the neutralization of ingested acid, J. Cell. Comp. Physiol. 2:157.CrossRefGoogle Scholar
  46. Jaffe, H. L., Bodansky, A., and Chandler, J. P., 1932, Ammonium chloride acidification, as modified by calcium intake: The relation between generalized osteoporosis and ostitis fibrosa, J. Exp. Med. 56:823.PubMedCrossRefGoogle Scholar
  47. Johnson, N. E., Alcantera, E. N., and Linkswiler, H., 1970, Effect of level of protein intake on urinary and fecal calcium and calcium retention of young adult males, J. Nutr. 100:1425.PubMedGoogle Scholar
  48. Kaplan, E. L., Hill, B. J., Locke, S., Toth, D. N., and Peskin, G. W., 1971, Metabolic acidosis and parathyroid hormone secretion in sheep, J. Lab. Clin. Med. 78:819.PubMedGoogle Scholar
  49. Kaye, M., Frueh, A. J., and Silverman, M., 1970, A study of vertebral bone powder from patients with chronic renal failure, J. Clin. Invest. 49:442.PubMedCrossRefGoogle Scholar
  50. Kildeberg, P., Engel, K., and Winters, R. W., 1969, Balance of net acid in growing infants. Endogenous and transintestinal aspects. Acta Pediatr. Scand. 58:321.CrossRefGoogle Scholar
  51. Kim, Y., and Linkswiler, H. M., 1979, Effect of protein intake on calcium metabolism and on parathyroid and renal function in the adult human male, J. Nutr. 109:1399.PubMedGoogle Scholar
  52. Krebs, H. A., Woods, H. F., and Alberti, K. G. M. M., 1975, Hyperlactatemia and lactic acidosis, Essays Med. Biochem. 1:81.Google Scholar
  53. Kunerth, B. L., and Pittman, M. S., 1939, A long-time study of nitrogen, calcium and phosphorus metabolism on a low-protein diet, J. Nutr. 17:161.Google Scholar
  54. Lemann, J., Jr., and Lennon, E. J., 1972, Role of diet, gastrointestinal tract and bone in acid-base homeostasis, Kidney Int. 1:275.PubMedCrossRefGoogle Scholar
  55. Lemann, J., Jr., and Relman, A. S., 1959, The relationship of sulfur metabolism to acid-base balance and of electrolyte excretion: The effects of DL-methionine in normal man, J. Clin. Invest. 38:2215.PubMedCrossRefGoogle Scholar
  56. Lemann, J., Lennon, E. J., Goodman, A. D., Litzow, J. R., and Relman, A. S., 1965, The net balance of acid in subjects given large loads of acid or alkali, J. Clin. Invest. 44:507.PubMedCrossRefGoogle Scholar
  57. Lemann, J., Jr., Litzow, J. R., and Lennon, E. J., 1966, The effects of chronic acid loads in normal man: Further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis, J. Clin. Invest. 45:1608.PubMedCrossRefGoogle Scholar
  58. Lemann, J., Jr., Litzow, J. R., and Lennon, E. J., 1967, Studies of the mechanism by which chronic metabolic acidosis augments urinary calcium excretion in man, J. Clin. Invest. 46:1318.PubMedCrossRefGoogle Scholar
  59. Lemann, J., Jr., Adams, N. D., and Gray, R. W., 1979, Urinary calcium excretion in human beings, N. Engl. J. Med. 301:535.PubMedCrossRefGoogle Scholar
  60. Lennon, E. J., Lemann, J., Jr., and Relman, A. S., 1962, The effects of phosphoproteins on acid balance in normal subjects, J. Clin. Invest. 41:637.PubMedCrossRefGoogle Scholar
  61. Lennon, E. J., Lemann, J., Jr., and Litzow, J. R., 1966, The effects of diet and stool composition on the net external acid balance of normal subjects, J. Clin. Invest. 45:1601.PubMedCrossRefGoogle Scholar
  62. Linkswiler, H. M., Joyce, C. L., and Anand, C. R., 1974, Calcium retention of young adult males as affected by level of protein and of calcium intake, Trans, N.Y. Acad. Sci. (Ser. II) 36:333.CrossRefGoogle Scholar
  63. Litzow, J. R., Lemann, J., and Lennon, E. J., 1967, The effect of treatment of acidosis on calcium balance in patients with chronic azotaemic renal disease, J. Clin. Invest. 46:280.PubMedCrossRefGoogle Scholar
  64. Malnic G., deMello Aires, M., and Giebisch G., 1972, Micropuncture study of renal tubular hydrogen ion transport in the rat, Am. J. Physiol. 222:147.PubMedGoogle Scholar
  65. Margen, S., Chu, J. -Y., Kaufman, N. A., and Calloway, D. H., 1974, Studies in calcium metabolism. I. The calciuretic effect of dietary protein, Am. J. Clin. Nutr. 27:584.PubMedGoogle Scholar
  66. Mazess, R. B., and Mather, W., 1974, Bone mineral content of North Alaskan Eskimos, Am. J. Clin. Nutr. 27:916.PubMedGoogle Scholar
  67. McCance, R. A., Widdowson, E. M., and Lehmann, H., 1942, The effect of protein intake on the absorption of calcium and magnesium, Biochem J. 36:686.PubMedGoogle Scholar
  68. Newell, G. K., and Beauchene, R. E., 1975, Effects of dietary calcium level, acid stress, and age on renal, serum, and bone responses of rats, J. Nutr. 105:1039.PubMedGoogle Scholar
  69. Nordin, B. E. C., Hodgekinson, A., and Peacock, M., 1967, The measurement and meaning of urinary calcium, Clin. Orthop. 52:293.PubMedCrossRefGoogle Scholar
  70. O’Riordan, J. L. H., and Aurbach, G. D., 1968, Mode of action of thyrocalcitonin, Endocrinology 82:377.PubMedCrossRefGoogle Scholar
  71. Pellegrino, E. D., and Biltz, R. M., 1965, The composition of human bone in uremia, Medicine (Baltimore) 44:397.CrossRefGoogle Scholar
  72. Pitts, R. F., 1974, Physiology of the Kidney and Body Fluids, Third Edition, p. 198–241, Year Book Medical Publishers, Chicago.Google Scholar
  73. Posner, A. S., 1973, Bone mineral on the molecular level, Fed. Proc. 32:1933.PubMedGoogle Scholar
  74. Rector, F. C., Jr., Seldin, D. W., and Copenhaver, J. H., 1955, The mechanism of ammonia excretion during chronic ammonium chloride acidosis, J. Clin. Invest. 34:20.PubMedCrossRefGoogle Scholar
  75. Reidenberg, M. M., Haag, B. L., Channick, B. J., Shuman, C. R., and Wilson, T. G. G., 1966, The response of bone to metabolic acidosis in man, Metabolism 15:236.PubMedCrossRefGoogle Scholar
  76. Reidenberg, M. M., Sevy, R. W., and Cucinotta, A. J., 1968, Hypercalciuria during acidosis in hypoparathyroidism, Proc. Soc. Exp. Biol. Med. 127:1.PubMedGoogle Scholar
  77. Relman, A. S., Lennon, E. J., and Lemann, J. Jr., 1961, Endogenous production of fixed acid and the measurements of the net balance of acid in normal subjects, J. Clin. Invest, 40:1621.PubMedCrossRefGoogle Scholar
  78. Schaefer, K. E., Nichols, G., Jr., and Cerey, C. R., 1963, Calcium phosphorous metabolism in man during acclimitization to carbon dioxide, J. Appl. Physiol. 18:1079.PubMedGoogle Scholar
  79. Schwartz, R., Woodcock, N. A., Blakely, J. D., and MacKeller, I., 1973, Metabolic response of adolescent boys to two levels of dietary magnesium and protein. II. Effect of magnesium and protein level on calcium balance, Am. J. Clin. Nutr. 26:519.PubMedGoogle Scholar
  80. Schwartz, W. B., Jenson, R. L., and Relman, A. S., 1954, The disposition of acid administered to sodium-depleted subjects: The renal response and the role of the whole body buffers, J. Clin. Invest. 33:587.PubMedCrossRefGoogle Scholar
  81. Schwartz, W. B., Orning, K. J., and Porter, R., 1957, The internal distribution of hydrogen ions with varying degrees of metabolic acidosis, J. Clin. Invest. 36:373.PubMedCrossRefGoogle Scholar
  82. Seyama, S., Iijima, S., and Katunuma, N., 1977, Biochemical and histocytochemical studies on response of ammonia-producing enzymes for NH4C1-induced acidosis, J. Histochem. Cytochem. 25:448.PubMedCrossRefGoogle Scholar
  83. Sherman, H. C., 1920, Calcium requirement in man, J. Biol. Chem. 44:21.Google Scholar
  84. Sherman, H. C., and Gettler, A. O., 1912, The balance of acid-forming and base-forming elements in foods, and its relation to ammonia metabolism, J. Biol. Chem. 11:323.Google Scholar
  85. Spencer, H., Kramer, L. Osis, D., and Norris, C., 1978, Effect of a high protein (meat) intake on calcium metabolism in man, Am. J. Clin. Nutr. 31:2167.PubMedGoogle Scholar
  86. Stacy, B. D., and Wilson, B. W., 1970, Acidosis and hypercalciuria: Renal mechanisms affecting calcium, magnesium and sodium excretion in the sheep, J. Physiol (Lond.) 210:549.Google Scholar
  87. Studer, R. K., and Borle, A. B., 1979, Effect of pH on the calcium metabolism of isolated rat kidney cells, J. Memb. Biol. 48:325.CrossRefGoogle Scholar
  88. Sutton, R. A. L., and Dirks, J. H., 1977, Renal handling of calcium: Overview, Adv. Exp. Med. Biol. 81:15.PubMedGoogle Scholar
  89. Sutton, R. A. L., Wong, N. L. M., and Dirks, J. H., 1979, Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney, Kidney Int. 15:520.PubMedCrossRefGoogle Scholar
  90. Swan, R. C., and Pitts, R. F., 1955, Neutralization of infused acid by nephrectomized dogs, J. Clin. Invest. 34:205.PubMedCrossRefGoogle Scholar
  91. Tanaka, Y., and DeLuca, H. F., 1973, The control of 25-hydroxy vitamin D metabolism by inorganic phosphorus, Arch, Biochem. Biophys. 154:566.CrossRefGoogle Scholar
  92. Termine, J. D., and Posner, A. S., 1966, Infrared analyses of rat bone: Age dependency of amorphous and crystalline mineral fractions, Science 153:1523.PubMedCrossRefGoogle Scholar
  93. Upton, P. K., and L’Estrange, J. L., 1977, Effects of chronic hydrochloric and lactic acid administrations on food intake, blood acid-base balance and bone composition of the rat, Q. J. Exp. Physiol. 62:223.Google Scholar
  94. Van Slyke, D. D., and Cullen, G. E., 1917, Studies of acidosis, I. The bicarbonate concentration of the blood plasma: Its significance, and its determination as a measure of acidosis, J. Biol. Chem. 30:289.Google Scholar
  95. Vaughan, J. M., 1970, The Physiology of Bone, p. 184, Clarendon Press, Oxford.Google Scholar
  96. Wachman, A., and Bernstein, D. S., 1968, Diet and osteoporosis, Lancet 1:958.PubMedCrossRefGoogle Scholar
  97. Wachman, A., and Bernstein D. S., 1970, Parathyroid hormone and metabolic acidosis. Its role in pH homeostasis, Clin. Orthop. 69:252.Google Scholar
  98. Walker, R. M., and Linkswiler, H. M., 1972, Calcium retention in the adult human male as affected by protein intake, J. Nutr. 102:1297.PubMedGoogle Scholar
  99. Walser, M., and Browder, A. A., 1959, Ion association II. The effect of sulfate infusion on calcium excretion, J. Clin. Invest. 38:1404.PubMedCrossRefGoogle Scholar
  100. Wamberg, S., Kildeberg, P., and Engel, K., 1976, Balance of net base in the rat II. Reference values in relation to growth rate, Biol. Neonate, 28:171.CrossRefGoogle Scholar
  101. Warnock, D. G., and Rector, F. C., Jr., 1979, Proton secretion by the kidney, Annu. Rev. Physiol. 41:197.PubMedCrossRefGoogle Scholar
  102. Wasserman, R. H., Comar, C. L., and Nold, M. M., 1956, The influence of amino acids and other organic compounds on the gastrointestinal absorption of calcium-45 and strontium-89 in the rat, J. Nutr. 59:371.PubMedGoogle Scholar
  103. Weber, H. P., Gray, R. W., Dominguez, J. H., and Lemann, J. Jr., 1976, The lack of effect of chronic metabolic acidosis on 25-OH-vitamin D metabolism and serum parathyroid hormone in humans, J. Clin. Endocrinol. Metab. 43:1047.PubMedCrossRefGoogle Scholar
  104. Whiting, S. J., and Draper, H. H., 1980, The role of sulfate in the calciuria of high-protein diets in adult rats, J. Nutr. 110:212.PubMedGoogle Scholar
  105. Williamson, B. J., and Freeman, S., 1957, Effects of acute changes in acid-base balance on renal calcium excretion in dogs. Am. J. Physiol. 191:384.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • John T. Brosnan
    • 1
  • Margaret E. Brosnan
    • 1
  1. 1.Department of BiochemistryMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations