Vive la Différence I: Nonisomorphism of Ultrapowers of Countable Models

  • Saharon Shelah
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 26)

Abstract

We show that it is not provable in ZFC that any two countable elementarily equivalent structures have isomorphic ultrapowers relative to some ultrafilter on ω.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AxKo]
    J. Ax and S. Kochen, Diophantine problems over local rings I, Amer. J. Math. 87 (1965), 605–630.MathSciNetMATHCrossRefGoogle Scholar
  2. [Bollobas]
    Bollobas, Random, Graphs, Academic Press, London-New York, 1985.MATHGoogle Scholar
  3. [JBSh 368]
    H. Judah and T. Bartoszynski and S. Shelah, The Chicoń diagram, Israel J. of Math.Google Scholar
  4. [Gregory]
    J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, J. Symb. Logic 41 (1976), 663–671.MathSciNetMATHCrossRefGoogle Scholar
  5. [Jech]
    T. Jech, Multiple Forcing, Cambridge Univ. Press, Cambridge, 1986.MATHGoogle Scholar
  6. [Keisler]
    H. J. Keisler, Ultraproducts and saturated models, Indag. Math. 26 (1964), 178–186.MathSciNetGoogle Scholar
  7. [Sh]
    S. Shelah, Classification theory and the number of non-isomorphic models, North Holland Publ. Co. Studies in Logic and the foundation of Math. 92 (1978).Google Scholar
  8. [Sh b]
    S. Shelah, Proper Forcing, Lect. Notes Math. 940 (1982), Springer-Verlag, Berlin Heidelberg NY Tokyo, 496.Google Scholar
  9. [Sh c]
    S. Shelah, Classification theory and the number of non-isomorphic models, revised, North Holland Publ. Co. Studies in Logic and the foundation of Math. 92 705+xxxiv (1990).Google Scholar
  10. [Sh f]
    S. Shelah, Proper and Improper Forcing, revised edition of [Sh b] (in preparation).Google Scholar
  11. [Sh 13]
    S. Shelah, Every two elementarily equivalent models have isomorphic ultra powers, Israel J. Math 10 (1971), 224–233.MathSciNetMATHCrossRefGoogle Scholar
  12. [Sh 65]
    K. Devlin and S. Shelah, A weak form of the diamond which follows from 2No < 2N 1 Israel J. Math. 29 (1978), 239–247.MathSciNetMATHCrossRefGoogle Scholar
  13. [Sh 82]
    S. Shelah, Models with second order properties III. Omitting types for L(Q), Proceedings of a workshop in Berlin, July 1977 Archiv f. Math. Logik 21 (1981), 1–11.Google Scholar
  14. [Sh 107]
    S. Shelah, Models with second order properties IV. A general method and eliminating diamonds, Annals Math. Logic 25 (1983), 183–212.MATHGoogle Scholar
  15. [ShHL 162]
    S. Shelah and B. Hart and C. Laflamme, Models with second order properties V. A general principle, Annals Pure Appl. Logic; (to appear).Google Scholar
  16. [Sh 177]
    S. Shelah, More on proper forcing, J. Symb. Logic 49 (1984), 1035–1038.Google Scholar
  17. [Sh 345]
    S. Shelah, Products of regular cardinals and cardinal invariant of Boolean Algebras, Israel J. of Math 70 (1990), 129–187.MATHCrossRefGoogle Scholar
  18. [Sh 405]
    S. Shelah, Vive la differance II-refuting Kim’s conjecture, (preprint) (Oct 1989).Google Scholar
  19. [ShFr 406]
    S. Shelah and D. Fremlin, Pointwise compact and stable sets of measurable functions, Journal of Symbolic Logic (submitted).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1992

Authors and Affiliations

  • Saharon Shelah
    • 1
  1. 1.Department of MathematicsHebrew UniversityJerusalemIsrael

Personalised recommendations