The Principle of Invariance with Special Reference to Perception

  • Patrick Suppes
Part of the Recent Research in Psychology book series (PSYCHOLOGY)


The principle of invariance is now a familiar one in psychology, especially because of its prominent role in the theory of measurement. The relation of invariance to the meaningfulness of various statistics for various scales of measurement is a particularly salient example that has received much discussion in the literature for over thirty years. Perhaps the most notorious case is that of whether standard intelligence tests have more than ordinal properties.


Hyperbolic Space Euclidean Geometry Visual Space Rigid Motion Depth Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aristotle, On the heavens, Translated by W.K.G. Guthrie (1939). Cambridge, MA. Harvard University Press.Google Scholar
  2. Battro, A.M., Netto, S.P., & Rozestraten, R.J.A. (1976). Riemannian geometries of variable curvature in visual space: Visual alleys, horopters, and triangles in big open fields. Perception, 5, 9–23.PubMedCrossRefGoogle Scholar
  3. Blank, A.A., (1961). Curvature of binocular visual space. An experiment. Journal of the Optical Society of America, 51, 335–339.CrossRefGoogle Scholar
  4. Blumenfeld, W. (1913). Untersuchungen über die scheinbare Grösse in Sehraume. Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 65, 241–404.Google Scholar
  5. Bowerman, M. (1989). Learning a semantic system. What role do cognitive predispositions play? In M.L. Rice & R.L. Schiefelbusch (Eds.), The Teachability of Language (pp. 133–169). Baltimore: Paul H. Brookes.Google Scholar
  6. Crangle, C. & Suppes, P. (1989). Geometrical semantics for spatial prepositions. In P.A. French, T.E. Uehling, Jr., and Howard K. Wettstein (Eds.), Midwest Studies in Philosophy, Volume XIV (pp. 399–422). Notre Dame, Indiana: Univ. of Notre Dame Press.Google Scholar
  7. Cutting, J.E. (1986). Perception with an eye for motion. Cambridge, MA: The MIT Press.Google Scholar
  8. Foley, J.M. (1972). The size-distance relation and intrinsic geometry of visual space: Implications for processing. Vision Research, 13, 323–332.CrossRefGoogle Scholar
  9. Hardy, L.H., Rand, G., Rittler, M.C., Blank, A.A., & Boeder, P. (1953). The geometry of binocular space perception. Knapp Memorial Laboratories, Institute of Ophthalmology, Columbia University College of Physicians and Surgeons.Google Scholar
  10. Hillenbrand, F. (1902). Theorie der scheinbaren Grösse bei binocularem Sehen. Denkschriften d. Wiener Akademie d. Wissenschaften. Mathematisch-Naturwissenschaftliche Classe, 7, 255–307.Google Scholar
  11. Indow, T. (1967). Two interpretations of binocular visual space: Hyperbolic and Euclidean. Annals of the Japan Association for Philosophy of Science, 3, 51–64.Google Scholar
  12. Indow, T. (1968). Multidimensional mapping of visual space with real and simulated stars. Perception & Psychophysics, 3, 45–53.CrossRefGoogle Scholar
  13. Indow, T. (1974). Applications of multidimensional scaling in perception. In Handbook of perception, Vol. 2, Psychophysical judgment and measurement (pp. 493–531). New York: Academic Press.Google Scholar
  14. Indow, T. (1975). An application of MDS to study of binocular visual space. U.S.-Japan Seminar: Theory, methods and applications of multidimensional scaling and related techniques. University of California, August 20–24, San Diego, Calif.Google Scholar
  15. Indow, T. (1979). Alleys in visual space. Journal of Mathematical Psychology, 19, 221–258.CrossRefGoogle Scholar
  16. Indow, T. (1982). An approach to geometry of visual space with no a priori mapping functions: Multidimensional mapping according to Riemannian metrics. Journal of Mathematical Psychology, 26, 204–236.CrossRefGoogle Scholar
  17. Indow, T., Inoue, E., & Matsushima K. (1962a). An experimental study of the Luneburg theory of binocular space perception (1). The 3- and 4-point experiments. Japanese Psychological Research, 4, 6–16.Google Scholar
  18. Indow, T., Inoue, E., & Matsushima K. (1962b). An experimental study of the Luneburg theory of binocular space perception (2). The alley experiments. Japanese Psychological Research, 4, 17–24.Google Scholar
  19. Indow, T., Inoue, E., & Matsushima K. (1963). An experimental study of the Luneburg theory of binocular space perception (3). The experiment in a spacious field. Japanese Psychological Research, 5, 10–27.Google Scholar
  20. Levelt, W.J.M. (1982). Cognitive styles in the use of spatial direction terms. In R.J. Jarvella & W. Klein (Eds.), Speech, place, and action, (pp. 251–268). John Wiley & Sons Ltd.Google Scholar
  21. Levelt, W.J.M. (1984). Some perceptual limitations on talking about space. In A.J. Van Doom, W.A. van de Grind, & J. Koenderink (Eds.), Limits in perception, (pp. 323–358). Utrecht: VNU Press.Google Scholar
  22. Luneburg, R.K. (1947). Mathematical analysis of binocular vision. Princeton, NJ: Princeton University Press.Google Scholar
  23. Luneburg, R.K. (1948). Metric methods in binocular visual perception. In Studies and essays, (pp. 215–240). New York: Interscience.Google Scholar
  24. Luneburg, R.K. (1950). The metric of binocular visual space. Journal of the Optical Society of America, 40, 627–642.CrossRefGoogle Scholar
  25. Matsushima, K., & Noguchi, H. (1967). Multidimensional representation of binocular visual space. Japanese Psychological Research, 9, 83–94.Google Scholar
  26. Nishikawa, Y., (1967). Euclidean interpretation of binocular visual space. Japanese Psychological Research, 9, 191–198.Google Scholar
  27. Ptolemy, C. (1984). The almagest. Translated by G. J. Toomer. New York: Springer Verlag.Google Scholar
  28. Suppes, P. (1959). Axioms for relativistic kinetics with or without parity. In L. Henkin, P. Suppes, & A. Tarski (Eds.), The axiomatic method with special reference to geometry and physics. (Proceedings of an international symposium held at the University of California, Berkeley, December 16, 1957 – January 4, 1958, pp. 291–307.) Amsterdam: North-Holland.Google Scholar
  29. Suppes, P. (1972). Some open problems in the philosophy of space and time. Synthese, 24, 298–316.CrossRefGoogle Scholar
  30. Suppes, P., Krantz, D.H., Luce, R.D., & Tversky, A. (1989). Foundations of measurement, Volume II, Geometrical, threshold, and probabilistic representations. San Diego, Calif.: Academic Press, Inc.Google Scholar
  31. Toth, L. F. (1964). Regular figures. New York: Macmillan.Google Scholar
  32. Wagner, M. (1985). The metric of visual space. Perception & Psychophysics, 38, 483–495.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Patrick Suppes
    • 1
  1. 1.Ventura HallStanford UniversityStanfordUSA

Personalised recommendations