Deforming Galois Representations

  • B. Mazur
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 16)

Abstract

Given a continuous homomorphism
$${G_{Q,S}}G{L_2}\left( {{Z_p}} \right)$$
where Gℚ,S is the Galois group of the maximal algebraic extension of ℚ unramified outside the finite set S of primes of ℚ, the motivating problem of this paper is to study, in a systematic way, the possible liftings of ρ̄ to p-adic representations,
$${G_{Q,S}}\mathop \to \limits^{{\rho _o}} G{L_2}\left( {{Z_p}} \right).$$
.

Keywords

Modular Form Local Ring Galois Group Galois Representation Continuous Homomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Art]
    E. Artin, “Theory of Algebraic Numbers,” notes by G. Würges from lectures at the Mathematisches Institut, Göttingen, translated and distributed by G. Striker, Göttingen, 1959.Google Scholar
  2. [B]
    N. Boston, N., “Deformation Theory of Galois Representations,” Harvard Ph.D. Thesis, 1987.Google Scholar
  3. B-M] N. Boston, and B. Mazur, Explicit universal deformations of Galois representations,, (to appear).Google Scholar
  4. [C-P-S]
    E. Cline, B. Parshall and L. Scott, Cohomology of finite groups of Lie type I, Publ. Math. IHES 45 (1975), 169–191.MathSciNetMATHGoogle Scholar
  5. [C-R]
    C. Curtis and I. Reiner, “Representation Theory of Finite Groups and Associated Algebras,” Interscience, New York-London, 1962.Google Scholar
  6. [D]
    P. Deligne, Formes modulaires et représentations de GL(2), Lecture Notes in Math. 349 (1973), 55–105, Springer-Verlag.MathSciNetCrossRefGoogle Scholar
  7. [D-S]
    P. Deligne and J.-P. Serre, Formes modulaires de poids 1, Annales scientifiques de l’E.N.S. 7 (1974), 507–530.MathSciNetMATHGoogle Scholar
  8. [F]
    W. Feit, As and A 7 are Galois groups over number fields, J. Alg. 104 (1986), 231–260.MathSciNetMATHCrossRefGoogle Scholar
  9. G-M] W. Goldman and J. Millson, The deformation theory of representations of fundamental groups of compact Kahler manifolds.Google Scholar
  10. [G]
    F. Gouvêa, “Arithmetic of p-adic Modular Forms,” Harvard Ph.D. Thesis, 1987; Lecture Notes in Mathematics 1304 (1988), Springer.MATHGoogle Scholar
  11. [H]
    K. Haberland, “Galois Cohomology of Algebraic Number Fields,” VEB Deutscher Verlag der Wissenschaften, Berlin, 1978.Google Scholar
  12. [Hecke]
    E. Hecke, Zur Theorie der elliptischen Modulfunktionen, in “Mathematische Werke,” (no. 23), Vandenhoeck & Ruprecht, Göttingen, 1970, pp. 428–453.Google Scholar
  13. [Hida]
    H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Scient. Ed. Norm. Sup. 19 (1986), 231–273.MathSciNetMATHGoogle Scholar
  14. [K-L]
    N. Katz and S. Lang, Finiteness theorems in geometric classfield theory, L’Enseignement mathématique XXVII (1981), 285–319.MathSciNetGoogle Scholar
  15. [LM]
    S. LaMacchia, Polynomials with Galois group PSL(2,7), Comm. Alg. 8 (1980), 983–992.CrossRefGoogle Scholar
  16. [L-M]
    A. Lubotzky and A. Magid, Varieties of representations of finitely generated groups, Memoirs of the A.M.S. 58 (1985), 336.MathSciNetGoogle Scholar
  17. [M-W]
    B. Mazur and A. Wiles, Onpadic analytic families of Galois representations, Comp. Math. 59 (1986), 231–264.MathSciNetMATHGoogle Scholar
  18. [Na]
    W. Narkiewicz, “Elementary and Analytic Theory of Algebraic Numbers,” PWN — Polish Scientific Publishers, Warsaw, 1974.Google Scholar
  19. [Sch]
    M. Schlessinger, Functors on Artin rings, Trans. A.M.S. 130 (1968), 208–222.MathSciNetMATHCrossRefGoogle Scholar
  20. [Sen 1]
    S. Sen, Continuous cohomology and p-adic Galois representations, Inv. Math. 62 (1981), 89–116.CrossRefGoogle Scholar
  21. Sen 2] S. Sen, The analytic variation of p-adic Hodge structure, to appear in Annals of Math.Google Scholar
  22. Serre 1] J.-P. Serre, Abelian t-adic Representations and Elliptic Curves, Benjamin, New York.Google Scholar
  23. [Serre 2]
    J.-P. Serre, Modular forms of weight one and Galois representations, in “Algebraic Number Fields,” edited by A. Fröhlich, Acad. Press, 1977, pp. 193–268.Google Scholar
  24. [Sh]
    G. Shimura, “Introduction to the Arithmetic Theory of Automorphic Functions,” Princeton Univ. Press, 1971.Google Scholar
  25. ZM] A. Zeh-Marschke, SL2(7) als Galoisgruppe über Q, to appear.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • B. Mazur
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations