Non-variational global coordinates for Teichmüller spaces

  • Irwin Kra
Part of the Mathematical Sciences Research Institute Publications book series (MSRI, volume 11)

Abstract

Let Γ be a terminal, torsion free, (regular) b-group of type (p, n), 2p — 2 + n > 0. Maskit [M3] has observed that the deformation space T(Γ) is a model for the Teichmüller space T(p, n) of Riemann surfaces of finite analytic type (p, n) (because Γ represents a surface of type (p,n) on its invariant component and, in general, 2p — 2 + n thrice punctured spheres— the latter carry no moduli). He showed that the group Γ can be constructed from 3p — 3 + n terminal b-groups of type (1, 1) or (0, 4) (hence with a one dimensional deformation space). Each one dimensional Teichmüller space can be identified with U, the upper half plane—the Teichmüller space of the torus.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AB]
    Ahlfors, L.V. and Bers, L., Riemann’s mapping theorem for variable metrics ,Ann. of Math. 72 (1960), 385–404.MathSciNetMATHCrossRefGoogle Scholar
  2. [B]
    Bers, L., Spaces of Kleinian groups ,in “Several Complex Variables, Maryland 1970”, Lecture Notes in Mathematics 155 (1970); Springer, Berlin, 9–34.CrossRefGoogle Scholar
  3. [Ke]
    Kerckhoff, S.P., The Nielsen realization problem ,Ann. of Math. 117 (1983), 235–265.MathSciNetMATHCrossRefGoogle Scholar
  4. [Kr1]
    Kra, I., On spaces of Kleinian groups ,Comment. Math. Helv. 47 (1972), 53–69.MathSciNetMATHCrossRefGoogle Scholar
  5. [Kr2]
    Kra, I., Canonical mappings between Teichmüller spaces. Bull. Amer. Math. Soc. 4 (1981), 143–179.MathSciNetMATHCrossRefGoogle Scholar
  6. [Kr3]
    Kra, I., On cohomology of Kleinian groups IV. The Ahlfors-Sullivan construction of holomorphic Eichler integrals ,J. d’Analyse Math. 43 (1983/84), 51–87.MathSciNetCrossRefGoogle Scholar
  7. [Kr4]
    Kra, I., On the vanishing of and spanning sets for Poincaré series for cusp forms ,Acta Math. 153 (1984), 47–116.MathSciNetMATHCrossRefGoogle Scholar
  8. [Kr5]
    Kra, I., Cusp forms associated to loxodromic elements of Kleinian groups ,Duke Math. J. 52 (1985), 587–625.MathSciNetMATHCrossRefGoogle Scholar
  9. [Kr6]
    Kra, I., On algebraic curves (of low genus) defined by Kleinian groups ,Ann. Polonici Math. 46 (1985), 147–156.MathSciNetMATHGoogle Scholar
  10. [Kr7]
    Kra, I., Uniformization, automorphic forms and accessory parameters ,RIMS (Kyoto Univ.) Kokyuroku 571 (1985), 54–84.MathSciNetGoogle Scholar
  11. [KM1]
    Kra, I. and Maskit, B., The deformation space of a Kleinian group ,Amer. J. of Math. 103 (1981), 1065–1102.MathSciNetMATHCrossRefGoogle Scholar
  12. [KM2]
    Kra, I. and Maskit, B., Bases for quadratic differentials ,Comment. Math. Helv. 57 (1982), 603–626.MathSciNetMATHCrossRefGoogle Scholar
  13. [Ml]
    Maskit, B., On boundaries of Teichmüller spaces and on Kleinian groups: II ,Ann. of Math. 91 (1970), 607–639.MathSciNetMATHCrossRefGoogle Scholar
  14. [M2]
    Maskit, B., Self-maps of Kleinian groups ,Amer. J. Math. 93 (1971), 840–856.MathSciNetMATHCrossRefGoogle Scholar
  15. [M3]
    Maskit, B., Moduli of marked Riemann surfaces ,Bull. Amer. Math. Soc. 80 (1974), 773–777.MathSciNetMATHCrossRefGoogle Scholar
  16. [M4]
    Maskit, B., On the classification of Kleinian groups: I-Koebe groups ,Acta Math. 135 (1975), 249–270.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1988

Authors and Affiliations

  • Irwin Kra
    • 1
    • 2
  1. 1.State University of New YorkStony BrookUSA
  2. 2.Mathematical Sciences Research InstituteBerkeleyUSA

Personalised recommendations