Fusion of Enveloped Viruses with Biological Membranes Fluorescence Dequenching Studies

  • Nor Chejanovsky
  • Ofer Nussbaum
  • Abraham Loyter
  • Robert Blumenthal
Part of the Subcellular Biochemistry book series (SCBI, volume 13)


Enveloped virions penetrate eukaryotic cells by two alternative routes (Chop-pin and Scheid, 1980; White et al., 1983). Envelopes of viruses belonging to the paramyxovirus group fuse with cells’ plasma membranes at pH 7.4 and consequently microinject their content, the viral nucleocapsid, directly into the cell cytoplasm (Choppin and Scheid, 1980; Loyter and Volsky, 1982; White et al., 1983). A different way of entry has been described for most other enveloped virions such as those belonging to the orthomyxovirus, toga, rhabdo, and herpes groups. Such viruses are taken into cells by endocyticlike processes. Fusion of the viral envelopes with the endosomal or lysosomal membranes is triggered by the intraorganelle low-pH environment and leads to the introduction of the viral content into the intracellular space (Chopin and Scheid, 1980; White et al., 1983). Fusion of the pH-dependent virions with the plasma membrane can be triggered by lowering the pH of the medium containing the virus-associated cells.


Influenza Virion Membrane Fusion Vesicular Stomatitis Virus Viral Glycoprotein Sendai Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.











dipicolinic acid






ethylenediaminetetracetic acid


fluorescence resonance energy transfer






precursor of the influen hemagglutinin glycoprotein


human erythrocyte ghosts


herpes simplex virus


hepatoma tissue cultured








Phenylmethylsulfonyl fluoride




octadecylrhodamine B-chloride


reconstituted influenza virus envelope


right-side-out (erythrocyte membrane) vesicles


reconstituted sendai virus envelope


Semliki Forest virus


vesicular stomatitis virus


  1. Abbs, M. T., and Phillips, J. H., 1980, Organization of the proteins of the chromaffin granule membrane, Biochim. Biophys. Acta. 595: 200–221.PubMedGoogle Scholar
  2. Amselem, S., Loyter, A., Lichtenberg, D., and Barenholtz, Y., 1985, The interaction of Sendai virus with negative charged liposomes: Virus induced lysis of carboxyfluorescein-loaded small unilamellar vesicles, Biochim. Biophys. Acta. 820: 1–10.PubMedGoogle Scholar
  3. Amselem, S., Barenholtz, Y., Loyter, A., and Lichtenberg, D., 1986, Fusion of Sendai virus with negative charged liposomes as studied by pyrene-labeled phospholipid liposomes, Biochim. Biophys. Acta. 860: 303–313.Google Scholar
  4. Bashford, C. L., Micklin, K. J., and Pasternak, C. A., 1985, Sequential onset of permeability change in mouse ascite cells induced by Sendai virus, Biochim. Biophys. Acta. 814: 242–255.Google Scholar
  5. Blumenthal, R., 1987, Membrane fusion, Curr. Top. Membr. Transport 29: 203–254.Google Scholar
  6. Blumenthal, R., 1988, Cooperativity in viral fusion, Cell Biophys. 12: 1–12.PubMedGoogle Scholar
  7. Blumenthal, R., Weinstein, J. N., Sharrow, S. O., and Henkart, P., 1977, Liposome-lymphocyte interactions: Saturable sites for transfer and intracellular release of liposome contents, Proc. Natl. Acad. Sci. U.S.A. 74: 5603–5607.PubMedGoogle Scholar
  8. Blumenthal, R., Bali-Puri, A., Walter, A., Covell, D., and Eidelman, O., 1987, pH-Dependent fusion of vesicular stomatitis virus with Vero cells: Measurement by dequenching of octa-decylrhodamine fluorescence, J. Biol. Chem. 262: 13614–13619.PubMedGoogle Scholar
  9. Blumenthal, R., Puri, A., Walter, A., and Eidelman, O., 1988, pH-Dependent fusion of vesicular stomatitis virus with cells: Studies of mechanism based on an allosteric model, in Molecular Mechanisms of Membrane Fusion (S. Ohki, D. Doyle, T. Flanagan, S. W. Hui, and E. Mayhew, eds.), pp. 367–383, Plenum Press, New York.Google Scholar
  10. Brand, C. M., and Skehel, J. J., 1972, Crystalline antigen from the influenza virus envelope, Nature New Biol. 238 (83): 145–147.PubMedGoogle Scholar
  11. Bundo-Morita, K., Gibson, S., and Lenard, J., 1988, Radiation inactivation analysis of fusion and hemolysis by vesicular stomatitis virus, Virology 163: 622–624.PubMedGoogle Scholar
  12. Chejanovsky, N., Beigel, M., and Loyter, A., 1984, Attachment of Sendai virus particles to cell membranes: Dissociation of adsorbed particles by dithiothreitol, J. Virol. 49: 1009–1013.PubMedGoogle Scholar
  13. Chejanovsky, N., and Loyter, A., 1985, Fusion between envelopes and biological membranes, J. Biol. Chem. 260: 7911–7918.PubMedGoogle Scholar
  14. Chejanovsky, N., Fridlender, B., and Loyter, A., 1985, Affinity targeting of Sendai virions to desialized human erythrocytes using hybrid antibody molecules, Biochem. Biophys. Acta. 812: 353–360.PubMedGoogle Scholar
  15. Chejanovsky, N., Henis, Y. I., and Loyter, A., 1986a, Fusion of fluorescently labeled Sendai virus envelope with living cultured cells as monitored by fluorescence dequenching, Exp. Cell Res. 164:353–365.PubMedGoogle Scholar
  16. Chejanovsky, N., Amselem, S., Zakai, N., Barenholtz, Y., and Loyter, A., 1986b, Membrane vesicles containing the Sendai virus binding glycoprotein, but not the viral fusion protein, fuse with phosphatidylserine liposomes at low pH, Biochemistry 25: 4810–4817.PubMedGoogle Scholar
  17. Chen, R. F., and Knutson, J. R., 1987, Fluorescence dyes encapsulated in liposomes: Mechanisms of fluorescence changes, Biophys. J. 51: 539a.Google Scholar
  18. Choppin, P. W., and Scheid, A., 1980, The role of viral glycoproteins in adsorption, penetration, and pathogenicity of viruses, Rev. Infect. Dis. 2: 40–58.PubMedGoogle Scholar
  19. Citovsky, V., and Loyter, A., 1985, Fusion of Sendai virions or reconstituted Sendai virus envelopes with liposomes or erythrocyte membranes lacking virus receptors, J. Biol. Chem. 260: 12072–12077.PubMedGoogle Scholar
  20. Citovsky, V., Blumenthal, R., and Loyter, A., 1985, Fusion of Sendai virions with phosphatidylcholine-cholesterol liposomes reflects the viral activity required for fusion with biological membranes, FEBS Lett. 193: 135–140.PubMedGoogle Scholar
  21. Citovsky, V., Yanai, P., and Loyter, A., 1986a, The use of circular dichroism to study conformational changes induced in Sendai virus envelope glycoproteins, J. Biol. Chem. 261: 2235–2239.PubMedGoogle Scholar
  22. Citovsky, V., Zakai, N., and Loyter, A., 1986b, Specific requirement for liposome-associated sialoglycolipids, but not sialoglycoproteins, to allow lysis of phospholipid vesicles by Sendai virions, Exp. Cell Res. 166: 279–294.PubMedGoogle Scholar
  23. Citovsky, V., Schuldiner, S., and Loyter, A., 1987, Osmotic swelling allows fusion of Sendai virions with chromaffin granula and desialized erythrocyte membranes, Biochemistry 26: 3856–3862.PubMedGoogle Scholar
  24. Citovsky, V., Rotem, S., Nussbaum, I., Laster, Y., Rott, R., and Loyter, A., 1988, Animal viruses are able to fuse with prokaryotic cells: Fusion between Sendai influenza virions and mycoplasma, J. Biol. Chem. 263: 461–467.PubMedGoogle Scholar
  25. Crimmins, D. L., Mehard, W. B., and Schlesinger, S., 1983, Physical properties of a soluble form of the glycoprotein of vesicular stomatitis virus at neutral acidic pH, Biochemistry 22: 5790–5796.PubMedGoogle Scholar
  26. Dales, S., 1973, Early events in cell-animal virus interactions, Bacteriol. Rev. 37(2): 103–135.PubMedGoogle Scholar
  27. Dalgleish, A. G., Beverley, P. C. L., Clapham, P. R., Crawford, D. H., Greaves, M. F., and Weiss, R. A., 1984, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus, Nature 312: 763–766.PubMedGoogle Scholar
  28. Dewhurst, S., Stevenson, M., and Volsky, D. J., 1987, Expression of the T4 molecule (AIDS virus receptor) by human brain-derived cells, FEBS Lett. 213(1): 133–137.PubMedGoogle Scholar
  29. Dimmock, N. J., 1982, Initial stages in infection with animal viruses, J. Gen. Virol. 59: 1–22.PubMedGoogle Scholar
  30. Doms, R. W., and Helenius, A., 1986, Quaternary structure of influenza virus hemagglutinin after acid treatment, J. Virol. 60(3): 833–899.PubMedGoogle Scholar
  31. Doms, R. W., Helenius, A., and White, J., 1985, Membrane fusion activity of the influenza virus hemagglutinin. The low pH-induced conformational change, J. Biol. Chem. 260(5): 2973–2981.PubMedGoogle Scholar
  32. Duzgunes, N., 1985, Membrane fusion, Subcell. Biochem 11: 195–286.PubMedGoogle Scholar
  33. Eidelman, I., Schlegel, R., Tralka, T. S., and Blumenthal, R., 1984, pH-Dependent fusion induced by vesicular stomatitis virus glycoprotein reconstituted into phospholipid vesicles, J. Biol. Chem. 259: 4622–4628.PubMedGoogle Scholar
  34. Ehrenstein, G., Blumenthal, R., Latorre, R., and Lecar, H., 1974, The kinetics of the opening and closing of individual eim channels in a lipid bilayer, J. Gen. Physiol. 63: 707.PubMedGoogle Scholar
  35. Ekerdt, R., Dahl, G., and Gratzl, M., 1981, Membrane fusion secretory vesicles and liposomes for different types of fusion, Biochem. Biophys. Acta. 646: 10–22.PubMedGoogle Scholar
  36. Fingeroth, J. D., Weis, J. J., Tedeer, T. F., Straminger, J. L., Biro, P. A., and Fearon, D. T., 1984, Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2, Proc. Natl. Acad. Sci. U.S.A. 81: 4510–4514.PubMedGoogle Scholar
  37. Fries, E., and Helenius, A., 1983, Binding of Semliki Forest Virus and its spike glycoproteins to cells, Eur. J. Biochem. 97: 213–220.Google Scholar
  38. Fukami, Y., Hasaka, Y., and Yamamoto, K., 1980, Separation of Sendai virus glycoproteins by CM-Sepharose column chromatography, FEBS Lett. 114: 342–347.PubMedGoogle Scholar
  39. Fung, B. K., and Stiver, L., 1978, Surface density determination in membranes by fluorescence energy transfer, Biochemistry 17: 5241–5248.PubMedGoogle Scholar
  40. Gething, M. J., Doms, R. W., York, D., and White, J., 1986, Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the hemagglutinin of influenza virus, J. Cell Biol. 102(1): 11–23.PubMedGoogle Scholar
  41. Gibson, S., Jung, C. Y., Takashi, M., and Lenard, J., 1986, Radiation inactivation analysis of influenza virus reveals different target sizes for fusion, leakage, and neuraminidase activities, Biochemistry 25(20): 6264–6268.PubMedGoogle Scholar
  42. Gitman, A. G., and Loyter, A., 1984, Construction of fusogenic vesicles bearing specific antibodies, J. Biol. Chem. 259(15): 9813–9820.PubMedGoogle Scholar
  43. Gitman, A. G., Khanae, I., and Loyter, A., 1985, Use of virus-attached antibodies or insulin molecules to mediate fusion between Sendai virus envelopes and neuraminidase-treated cells, Biochemistry 24: 2762–2768.PubMedGoogle Scholar
  44. Graves, P. N., Schulman, J. L., Young, J. F., and Palese, P., 1983, Preparation of influenza virus subviral particles lacking the HAI subunit of hemagglutinin: Unmasking of cross-reactive HA2 determinants, Virology 126(1): 106–116.PubMedGoogle Scholar
  45. Guyden, J., Godfrey, W., Doe, B., Ousley, F., and Wofsky, L., 1983, Immunospecific vesicles targeting facilitates fusion with selected cell populations, in Cell Fusion, Vol. 103, pp. 239–253, CIBA Foundation Symposium, Pitman, London.Google Scholar
  46. Harmsen, M. L., Wilsschut, J., Scherphof, G., Hulstuert, C., and Hoekstra, D., 1985, Reconstitution and fusogenic properties of Sendai virus envelopes, Eur. J. Biochem. 149: 591–599.PubMedGoogle Scholar
  47. Haywood, A. M., 1974, Characteristics of Sendai virus receptor in a model membrane, J. Mol. Biol. 83: 427–436.PubMedGoogle Scholar
  48. Haywood, A. M., and Boyer, B. P., 1984, Effect of lipid composition upon fusion of liposomes with Sendai virus membrane, Biochemistry 29: 4161–4166.Google Scholar
  49. Helenius, A., and Simons, K., 1975, Solubilization of membranes by detergents, Biochim. Biophys. Acta. 415: 29–79.PubMedGoogle Scholar
  50. Helenius, A., Morrein, B., Fries, E., Simons, K., Robinson, P., Schirrmacher, V., Terhost, C., and Strominger, J. L., 1978, Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus, Proc. Natl. Acad. Sci. U.S.A. 75: 3846–3850.PubMedGoogle Scholar
  51. Helenius, A., Kartenbeck, J., Simons, K., and Fries, E., 1980, On entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol. 84: 404–420.PubMedGoogle Scholar
  52. Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J., 1984, Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochemistry 23: 5675–5681.PubMedGoogle Scholar
  53. Hoekstra, D., Klappe, K., de Boer, T., and Wilschut, J., 1985, Characterization of the fusogenic properties of Sendai virus: Kinetics of fusion with erythrocyte membranes, Biochemistry 24: 4739–4745.PubMedGoogle Scholar
  54. Homma, M., and Ohuchi, M., 1973, Trypsin action on the growth of Sendai virus in tissue culture cells, J. Virol. 12: 1457–1465.PubMedGoogle Scholar
  55. Hosaka, Y., and Schimizu, K., 1972, Artificial assembly of envelope particles of HVI (Sendai virus). I. Assembly of hemolysis and fusion factors from envelope stabilized with Nonidet P-40, Virology 49: 627–639.PubMedGoogle Scholar
  56. Hsu, M., Scheid, A., and Choppin, P. W., 1983, Fusion of Sendai virus with liposomes: Dependence on the viral fusion protein (F) and the lipid composition of liposomes, Virology 126: 361–369.PubMedGoogle Scholar
  57. Huang, R. T. C., Rott, R., and Klenk, H. D., 1981, Influenza viruses cause hemolysis and fusion of cells, Virology 110: 243–247.PubMedGoogle Scholar
  58. Israel, S., Ginsberg, D., Laster, Y., Zakai, N., Milner, Y., and Loyter, A., 1983, Fusion of Sendai virus envelopes with human erythrocytes: A possible involvement of virus-associated protease, Biochim. Biophys. Acta. 732: 337–346.PubMedGoogle Scholar
  59. Kawasaki, K., Sato, S. B., and Ohnishi, S. L, 1983, Membrane fusion activity of reconstituted vesicles of influenza virus hemagglutinin glycoproteins, Biochim. Biophys. Acta. 733: 286–290.PubMedGoogle Scholar
  60. Keller, P. M., Person, S., and Snipes, W., 1977, A fluorescence enhancement assay of cell fusion, J. Cell Set. 28: 167–177.Google Scholar
  61. Kielian, M., and Helenius, A., 1986, Alpha viruses, in The Togaviridae and Flaviridae (S. Schlesinger and M. J. Schlesinger, eds.), pp. 91–119, Plenum Press, New York.Google Scholar
  62. Klatzmann, D., Champagne, E., Chamaret, S., Gruest, J., Getard, D., Herrend, T., Gluckman, J.-C, and Montagnier, L., 1984, T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature 312: 767–768.PubMedGoogle Scholar
  63. Klenk, H. D., Rott, R., Orlich, M., and Blodorn, J., 1975, Activation of influenza A viruses by trypsin treatment, Virology 68(2): 426–439.PubMedGoogle Scholar
  64. Kundrot, L. E., Springer, E. A., Kendall, B. A., McDonald, R. L., and McDonald, R. I., 1983, Sendai virus-induced lysis of liposomes requires cholesterol, Proc. Nad. Acad, Sci. U.S.A. 80: 1608–1612.Google Scholar
  65. Lakowicz, J. R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.Google Scholar
  66. Lapidot, M., Nussbaum, O., and Loyter, A., 1987, Fusion of membrane vesicles bearing only the influenza hemagglutinin with erythrocytes, living cultured cells and liposomes, J. Biol. Chem. 262: 13736.PubMedGoogle Scholar
  67. Laster, Y., Sabban, E., and Loyter, A., 1972, Susceptibility of membrane phospholipids in erythrocyte ghosts to phospholipase C and their refractiveness in the intact cell, FEBS Lett. 20: 307–310.PubMedGoogle Scholar
  68. Loyter, A., and Citovsky, V., 1987, The role of Sendai virus envelope glycoproteins in fusion with negatively-charged and neutral liposomes, in Cellular Membrane Fusion: Fundamental Mechanisms and Application of Membrane Fusion Techniques (J. Wilschut and D. Hoekstra, eds.), Marcel Dekker, New York.Google Scholar
  69. Loyter, A., and Volsky, D. J., 1982, Reconstituted Sendai virus envelopes as carriers for the introduction of biological materials into animal cells, in Membrane Reconstitution (G. Poste and G. L. Nicolson, eds.), pp. 215–266, Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  70. Loyter, A., Citovsky, V., and Ballas, N., 1987, Sendai virus envelopes as a biological carrier: Reconstitution, targeting and application, in Cellular Membrane Fusion: Fundamental Mechanisms and Application of Membrane Fusion Techniques (J. Wilschut and D. Hoekstra, eds.), Marcel Dekker, New York.Google Scholar
  71. Loyter, A., Citovsky, V., and Blumenthal, R., 1988a, The use of fluorescence dequenching methods to follow viral membrane fusion events, in Methods Biochem. Anal. 33: 128–164.Google Scholar
  72. Loyter, A., Nussbaum, O., and Citovsky, V., 1988b, Active function of membrane receptors in fusion of enveloped viruses with cell plasma membranes, in Molecular Mechanisms of Membrane Fusion (S. Ohki, D. Doyle, T. Flanagan, S. W. Hui, and E. Mayhew, eds.), pp. 413–426, Plenum Press, New York.Google Scholar
  73. Maddon, P. J., Littman, D. R., Godfrey, M., Maddon, D. E., Chess, L., and Axel, R., 1985, The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: A new member of the immunoglobulin gene family, Cell 42(1): 93–104.PubMedGoogle Scholar
  74. Maeda, Y., Asano, A., Okada, Y., and Ohnishi, S. I., 1977, Transmembrane phospholipid motions induced by F glycoprotein in hemagglutinating virus of Japan, J. Virol. 21: 232–241.PubMedGoogle Scholar
  75. Markwell, M. A., Svennerholm, L., and Paulson, J. C., 1981, Specific gangliosides function as a host cell receptor for Sendai virus, Proc. Natl. Acad. Sci. U.S.A. 78: 5406–5410.PubMedGoogle Scholar
  76. Massen, J. A., and Terhorst, C., 1981, Identification of a cell-surface protein involved in the binding site of Sindbis virus on human lymphoblastic cell lines using a heterobifunctional cross-linker, Eur. J. Biochem. 115: 153–158.Google Scholar
  77. Matlin, K. S., Reggio, H., Helenius, A., and Simons, K., 1981, Infectious entry pathway of influenza virus in a canine kidney cell line,J. Cell Biol. 91: 601–613.PubMedGoogle Scholar
  78. McDougal, J. S., Kennedy, M. S., Stigh, J. M., Cort, S. P., Mawle, A., and Nicholson, J. K. A., 1986, Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110 K viral protein and the T4 molecule, Science 231: 382–385.PubMedGoogle Scholar
  79. Metsikko, K., van Meer, G., and Simons, K., 1986, Reconstitution of fusogenic activity vesicular stomatitis, EMBO J. 5: 3429–3435.PubMedGoogle Scholar
  80. Monod, J., Changeux, J.-P., and Jacob, F., 1963, Allosteric proteins and cellular control systems, J. Mol. Biol. 6: 306–329.PubMedGoogle Scholar
  81. Monod, J., Wyman, J., and Changuez, J.-P., 1965, On the nature of allosteric transitions: A plausible model, J. Mol Biol. 12: 88–118.PubMedGoogle Scholar
  82. Morris, S. J., Bradley, D., Gibson, G. C., Smith, P. D., and Blumenthal, R., 1988, Use of membrane-associated fluorescence probes to monitor fusion of vesicles: Rapid kinetics of aggregation and fusion using pyrene excimer/monomer fluorescence, in Spectroscopic Membrane Probes (L. Loew, ed.), Vol. I., pp. 161–191, Boca Raton, FL.Google Scholar
  83. Nir, S., Klappe, K., and Hoekstra, D., 1986, Kinetics and extent of fusion between Sendai virus and erythrocyte ghosts: Application of a mass action kinetic model, Biochemistry 25: 2155–2161.PubMedGoogle Scholar
  84. Nussbaum, O., and Loyter, A., 1987, Quantitative determination of virus-membrane fusion events: Fusion of influenza virions with plasma membranes and membranes of endocyte vesicles in living cultured cells, FEBS Lett. 221: 61–67.PubMedGoogle Scholar
  85. Nussbaum, O., Zakai, N., and Loyter, A., 1984, Membrane-bound antiviral antibodies as receptors for Sendai virions in receptor-depleted erythrocytes, Virology 138: 185–197.PubMedGoogle Scholar
  86. Nussbaum, O., Lapidot, M., and Loyter, A., 1987, Reconstitution of functional influenza virus envelopes and fusion with membrane and liposomes lacking virus receptors, J. Virol. 61: 2245–2252.PubMedGoogle Scholar
  87. Oku, M., Nujima, S., and Inoue, K., 1982, Studies on the interactions of HVJ (Sendai virus) with liposomal membranes induced permeability of liposomes containing glycoprotein, Virology 116: 419–427.PubMedGoogle Scholar
  88. Oldstone, M. B. A., Tishon, A., Dukto, F., Kennedy, S. I. T., Holland, J. J., and Lampert, P. W., 1980, Does the major histocompatibility complex serve as a specific receptor for Semliki Forest virus? J. Virol. 34: 256–265.PubMedGoogle Scholar
  89. Ozawa, M., Asano, A., and Okada, Y., 1979a, The presence and cleavage of interpolated disulfide bonds in viral glycoproteins, J. Biochem. (Tokyo) 86: 1361–1364.Google Scholar
  90. Ozawa, M., Asano, A., and Okada, Y., 1979b, Biological activities of glycoproteins of HVJ (Sendai virus) studied by reconstitution of hybrid envelope and by concanavalin A-mediated binding: A new function of HANA protein and structural requirement for F protein hemolysis, Virology 99: 197–202.PubMedGoogle Scholar
  91. Pasternak, C. A., Alder, G. M., Bashford, C. L., Buckley, C. D., Micklem, K. J., and Patel, K., 1985, Cell damage by viruses, toxins and complement: common features of pore-formation and its inhibition by Ca2+, Biochem. Soc. Symp. 50: 247–264.PubMedGoogle Scholar
  92. Poste, G., and Pasternak, C. A., 1978, Membrane fusion, in Cell Surface Reviews: Membrane Fusion (G. Poste and G. L. Nicolson, eds.), Vol. 5, pp. 306–321, North-Holland Publishing, Amsterdam.Google Scholar
  93. Puri, A., Winick, J., Lowy, R. J., Covell, D., Eidelman, O., Walterm, A., and Blumenthal, R., 1988, Activation of vesicular stomatitis virus fusion with cells by pretreatment at low pH, J. Biol. Chem. 263: 4749–4763.PubMedGoogle Scholar
  94. Razin, S., and Tully, J., 1970, Cholesterol requirements of mycoplasma, J. Bacteriol. 102: 306–310.PubMedGoogle Scholar
  95. Rott, R., and Klenk, H. D., 1977, Structure and growth of viral envelopes, in Virus Infection and the Cell Surface (G. Poste and G. L. Nicolson, eds.), Vol. 2, pp. 47–48, North-Holland Publishing, Amsterdam.Google Scholar
  96. Ruigrok, R. W., Martin, S. R., Wharton, S. A., Skehel, J. J., Bayley, P. M., and Wiley, D. C., 1986, Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes, Virology 155(2): 484–497.PubMedGoogle Scholar
  97. Sato, S. B., Kawasaki, K., and Ohnishi, S., 1983, Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments, Proc. Natl. Acad. Sci. U.S.A. 80: 3153–3157.PubMedGoogle Scholar
  98. Scheid, A., and Choppin, P. W., 1974, Identification of biological activities of paramyoxvirus glycoproteins: Activation of cell fusion hemolysis and infectivity by proteolytic change of an active precursor protein of Sendai virus, Virology 57: 475–479.PubMedGoogle Scholar
  99. Schlegel, R., Willingham, M. C., and Pastan, I. H., 1982, Saturable binding sites for vesicular stomatitis virus on the surface of Vero cells, J. Virol. 43: 871–875.PubMedGoogle Scholar
  100. Schlegel, R., Tralka, T. S., Willingham, M. C., and Pastan, I. H., 1983, Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV-binding site?, Cell 32: 639–646.PubMedGoogle Scholar
  101. Schmidt, M. F. G., and Lambrecht, B., 1985, On the structure of the acyl linkage and the function of fatty acyl chains in the influenza virus hemagglutinin and the glycoproteins of Semliki Forest virus, J. Gen. Virol. 66: 2635–2647.PubMedGoogle Scholar
  102. Schulze, I. T., 1975, The biologically active proteins of influenza virus: The hemagglutinins, in The Influenza Viruses and Influenza (E. D. Kilbourne, ed.), pp. 53–82, Academic Press, New York.Google Scholar
  103. Sinibaldi, L., Gordoni, P., Seganti, L., Superti, F., Tsaing, H., and Orsi, N., 1985, Gangliosides in early interactions between vesicular stomatitis virus and CER cells, Microbiologia 8(4): 355–365.Google Scholar
  104. Skehel, J., Bayley, P., Brown, E., Martin, S., Waterfield, M., White, J., Wilson, I., and Wiley, D., 1982, Changes in conformation of influenza virus hemagglutinin at the pH optima of virus-mediated membrane fusion, Proc. Natl. Acad. Sci. U.S.A. 79: 968–972.PubMedGoogle Scholar
  105. Smith, A. L., and Tignor, G. H., 1980, Host cell receptors for two strains of Sindbis virus, Arch. Virol. 66(1): 11–26.PubMedGoogle Scholar
  106. Snyder, B., and Freire, E., 1982, Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions, Biophys. J. 40: 137–148.PubMedGoogle Scholar
  107. Stegmann, T., Hoekstra, O., Senerphob, G., and Wilschut, J., 1985, Kinetics of pH-dependent fusion between influenza virus and liposomes, Biochemistry 24: 3107–3113.PubMedGoogle Scholar
  108. Stegmann, T., Hoekstra, G., Scherpol, G., and Wilschut, J., 1986, Fusion activity of influenza virus, J. Biol. Chem. 261: 10966–10969.PubMedGoogle Scholar
  109. Stegmann, T., Morselt, W. M., Booy, F. P., van Breemen, J. F. L., Scherpol, G., and Wilschut, J., 1987, Functional reconstitution of influenza virus envelopes, EMBO J. 6: 2651–2659.PubMedGoogle Scholar
  110. Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry 29: 4093–4099.Google Scholar
  111. Suzuki, Y., Matsunaga, M., and Matsumoto, M., 1985, N-Acetyl neuraminyl lactosyl ceramide, GM3-NeuAc, a new influenza A virus receptor which mediates the adsorption-fusion process of viral infection. Binding specificity of influenza virus A/Aichi/2/68 (H3N2) to membrane-associated GM3 with different molecular species of sialic acid, J. Biol. Chem. 260(3): 1362–1365.PubMedGoogle Scholar
  112. Svensson, V., 1985, Role of vesicles bearing adenovirus 2: Internalization into HeLa cells, J. Virol. 55: 442–449.PubMedGoogle Scholar
  113. Tedder, T. F., Goldmacher, V. S., Lambert, J. M., and Schlossman, S. F., 1986, Epstein-Barr virus binding induces internalization of the C3d receptor: A novel immunotoxin delivery system, J. Immunol. 137: 1387–1391.PubMedGoogle Scholar
  114. Tozawa, H., Watanabe, M., and Ishida, N., 1973, Structural components of Sendai virus, Virology 55: 242–253.PubMedGoogle Scholar
  115. Vainstein, A., Hershkovitz, M., Israel, S., Rabin, S., and Loyter, A., 1984, A new method for reconstitution of highly fusogenic Sendai virus envelopes, Biochim. Biophys. Acta. 773: 181–188.PubMedGoogle Scholar
  116. Volsky, D. J., and Loyter, A., 1978, An efficient method for reassembly of fusogenic Sendai virus envelopes after solubilization of intact virion with Triton X-100, FEBS Lett. 92: 190–194.PubMedGoogle Scholar
  117. Volsky, D. J., Shapiro, I. M., and Klein, G., 1980, Transfer of Epstein-Barr virus receptors to receptor-negative cells permits virus penetration and antigen expression, Proc. Natl. Acad. Sci. U.S.A. 77: 5453–5455.PubMedGoogle Scholar
  118. Wagner, R. G., 1975, Reproduction of rhabdoviruses, in Comprehensive Virology (H. Fraenkel-Conrat and R. R. Wagner, eds.), Vol. 4, pp. 1–93, Plenum Press, New York.Google Scholar
  119. Webster, R. G., Brown, L. E., and Jackson, D. C., 1983, Changes in the antigenicity of the hemagglutinin molecule of H3 influenza virus at acidic pH, Virology 126(2): 587–599.PubMedGoogle Scholar
  120. Weinstein, J. N., Yoshikami, S., Henkart, P., Blumenthal, R., and Hagins, W. A., 1977, Lipo-some-cell interaction: Transfer and intracellular release of a trapped fluorescent marker, Science 195: 489–492.PubMedGoogle Scholar
  121. Weinstein, J. N., Ralston, E., Leserman, L. D., Klausner, R. D., Dragsten, P., Henkart, P., and Blumenthal, R., 1984, Self-quenching of carboxyfluorescein fluorescence: Uses in studying liposome stability and liposome-cell interaction, in Liposome Technology (G. Gregoriadis, ed.), Vol. 3, pp. 183–204, CRC Press, Boca Raton, FL.Google Scholar
  122. Wharton, S. A., Skehel, J. J., and Wiley, D. C., 1986, Studies of influenza hemagglutinin-mediated membrane fusion, Virology 144: 27–35.Google Scholar
  123. White, J., and Helenius, A., 1980, pH-Dependent fusion between the Semliki Forest virus membrane and liposomes, Proc. Natl. Acad. Sci. U.S.A. 77: 3273–3277.PubMedGoogle Scholar
  124. White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16: 151–195.PubMedGoogle Scholar
  125. Wilschut, J., and Pahahadjopoulos, D., 1979, Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents, Nature 281: 690–692.PubMedGoogle Scholar
  126. Wilson, I., Skehel, J. J., and Wiley, D. C., 1981, Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution, Nature 289: 366–373.PubMedGoogle Scholar
  127. Wolber, P. K., and Hudson, B. S., 1979, An analytic solution of the Förster energy transfer problem in two dimensions, Biophys. J. 28: 197–210.PubMedGoogle Scholar
  128. Wolf, D., Kahana, I., Nir, S., and Loyter, A., 1983, The interaction between Sendai virus and cell membranes, Exp. Cell Res. 130: 361–369.Google Scholar
  129. Wyman, 1948, Heme proteins, Adv. Protein Chem. 4: 407–531.PubMedGoogle Scholar
  130. Yewdell, J. W., Gerhard, W., and Bachi, T., 1983, Monoclonal anti-hemagglutinin antibodies detect irreversible antigenic alterations that coincide with the acid activation of influenza virus A/PR/834-mediated hemolysis, J. Virol. 48 (1): 239–248.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Nor Chejanovsky
    • 1
  • Ofer Nussbaum
    • 1
  • Abraham Loyter
    • 1
  • Robert Blumenthal
    • 2
  1. 1.Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations