Advertisement

Ontogenetic Evidence for Cranial Homologies in Monotremes and Therians, with Special Reference to Ornithorhynchus

  • Ulrich Zeller
Chapter

Overview

The ontogeny of the tympanic and otic regions of the head of Ornithorhynchus anatinus was studied in serial sections of fifteen stages and compared with Tachyglossus (Monotremata) and therian mammals. Recent monotremes retain a number of synapsid plesiomorphies in the middle ear. These include the absence of a caput mallei, the synostosis between praearticulare and tympanicum, the columelliform stapes, the presence of a secondary tympanic membrane at the lateral aperture of the recessus scalae tympani, and the absence of a bulla tympanica. In addition, Ornithorhynchus retains the plesiomorphic synapsid condition in that the foramen perilymphaticum and recessus scalae tympani are close to the cranial base; a processus recessus and an aquaeductus cochleae are lacking. Besides these plesiomorphies, Ornithorhynchus shares with Tachyglossus the following derived characters: The incus lies medial to the malleus, the tympanicum is nearly horizontal, the stapes is not penetrated by the a. stapedia, the ductus cochlearis is elongated rostromedially into the cranial base and, in contrast to the Theria, does not form a cochlea. Among mammals, these characters can be regarded as synapomorphic for the Monotremata. Monotremes resemble therians in having three middle ear ossicles, which, in the adults, together with praearticulare and tympanicum, are separate from the jaw apparatus. In both groups the praearticulare forms the anterior process (folii) of the malleus, and the tympanicum is the frame for the tympanic membrane. Therefore, a high degree of separation of the angulare, articulare, and praearticulare from the lower jaw between the praearticulare and dentale, significant in the transmission of airborne sound, is likely to have been present in the common ancestor of all Recent mammals. Other shared derived characters (synapomorphies) of monotremes and therians are the squamoso-dentary jaw joint and the m. tensor tympani. Recent Mammalia, therefore, form a monophyletic group. The morphogenesis of the head does not provide evidence for close phylogenetic relationships among the Monotremata, Triconodonta, Multituberculata, or Pantotheria. The available evidence suggests that the dichotomy of the phyletic lines leading to monotremes and therians occurred well before the origin of Eupantotheria.

Keywords

Tympanic Membrane Cranial Base Cranial Cavity Otic Capsule Tympanic Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allin, E.F. 1975. Evolution of the mammalian middle ear. J. Morph. 147:403–438.CrossRefGoogle Scholar
  2. Allin, E.F. 1986. The auditory apparatus of advanced mammal-like reptiles and early mammals. In: The ecology and biology of mammal-like reptiles (Hotton, N. Ill, Maclean, P.D., Roth, J.J., Roth, E.C., eds.). Washington, D.C., and London: Smithsonian Institution Press, pp. 283–294.Google Scholar
  3. Archer, M., Flannery, T.F., Ritchie, A., Molnar, R.E. 1985. First Mesozoic mammal from Australia—An early Cretaceous monotreme. Nature 318:363–366.CrossRefGoogle Scholar
  4. Arnold, W. 1974. Zur Frage der Produktion und Resorption der Perilymphe (Lymphabfluβ des Innenohres). Z. Laryng. Rhinol. 53:774–790.Google Scholar
  5. Barghusen, H.R. 1986. On the evolutionary origin of the the-rian tensor veli palatini and tensor tympani muscles. In: The ecology and biology of mammal-like reptiles (Hotton, N. Ill, Maclean, P.D., Roth, J.J., Roth, E.C., eds.). Washington, D.C., and London: Smithsonian Institution Press, pp. 253–262.Google Scholar
  6. Bonaparte, J.F., Rougier, G. 1987. Mamiferos del Cretacio inferior de Patagonia, IV Congreso Latinoamericano de Paleontologia, Bolivia 1:343–359.Google Scholar
  7. Chatterjee, S. 1982. A new cynodont reptile from the Triassic of India. J. Paleontol. 56:203–214.Google Scholar
  8. Clemens, W.A., Kielan-Jaworowska, Z. 1979. Multituberculata. In: Mesozoic mammals (Lillegraven, J.A., Kielan Jaworowska, Z., Clemens, W.A., eds.). Berkeley: University of California Press, pp. 99–149.Google Scholar
  9. Crompton, A.W. 1972. The evolution of the jaw articulation of cynodonts. In: Studies in vertebrate evolution (Joysey, K.A., Kemp, T.S., eds.). Edinburgh: Oliver & Boyd, pp. 231–251.Google Scholar
  10. Crompton, A.W., Hylander, W.L. 1986. Changes in mandibular function following the acquisition of a dentarysquamosal jaw articulation. In: The ecology and biology of mammal-like reptiles (Hotton, N. Ill, Maclean, P.D., Roth, J.J., Roth, E.C., eds.). Washington, D.C., and London: Smithsonian Institution Press, pp. 263–282.Google Scholar
  11. Crompton, A.W., Jenkins, F.A. 1979. Origin of mammals. In: Mesozoic mammals (Lillegraven, J.A., Kielan-Jaworowska, Z., Clemens, W.A., eds.). Berkeley: University of California Press, pp. 59–73.Google Scholar
  12. Crompton, A.W., Sun, A.-L. 1985. Cranial structure and relationships of the Liassic mammal Sinoconodon. Zool. J. Linn. Soc. London 85:99–119.CrossRefGoogle Scholar
  13. de Beer, G.R. 1937. The development of the vertebrate skull. Oxford: Clarendon PressGoogle Scholar
  14. de Burlet, H.M. 1934. Vergleichende Anatomie des statoakustischen Organs. In: Handbuch der vergleichenden Anatomie der Wirbeltiere (Bolk, L., Göppert, E., Kallius, E., Lubosch, W., eds.). Berlin, Wien: Urban & Schwarzenberg, pp. 1293–1432.Google Scholar
  15. Denker, A. 1901. Zur Anatomie des Gehörorgans der Monotremata. Semon Zool. Forschungsreisen in Australien 3(l):635–662.Google Scholar
  16. Eschweiler, R. 1899a. Zur vergleichenden Anatomie der Muskeln und der Topographie des Mittelohres verschiedener Säugethiere. Arch. mikr. Anat. Entwickl-Gesch. 53:558–622.CrossRefGoogle Scholar
  17. Eschweiler, R. 1899b. Die Fenestra cochleae bei Echidna hystrix. Anat. Anz. 16:584–590.Google Scholar
  18. Fleischer, G. 1973. Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Säugetierk. Mitt. 21:131–239.Google Scholar
  19. Fleischer, G. 1978. Evolutionary principles of the mammalian middle ear. Adv. Anat. Embr. Cell. Biol. 55:1–70.Google Scholar
  20. Frick, H. 1952. Über die Aufteilung des Foramen perilymphaticum in der Ontogenese der Säuger. Z. Anat. Entwickl. Gesch. 116:239–279.Google Scholar
  21. Frick, H., Starck, D. 1963. Vom Reptil-zum Säugerschädel. Z. Säugetierk. 28:321–341.Google Scholar
  22. Gaupp, E. 1908. Zur Entwicklungsgeschichte und vergleichenden Morphologie des Schädels von Echidna aculeata var. typica. Semon Zool. Forschungsreisen in Australien 3(2):539–788.Google Scholar
  23. Gaupp, E. 1913. Die Reichertsche Theorie, (Hammer Amboss- und Kieferfrage). Arch. Anat. Entwickl Gesch., Suppl. 1912:1–416.Google Scholar
  24. Goodrich, E.S. 1915. The Chorda tympani and middle ear in reptiles, birds, and mammals. Quart. J. micr. Sci. 61:137–160.Google Scholar
  25. Graybeal, A., Rosowski, J.J., Ketten, D.R., Crompton, A.W. 1989. Inner-ear structure in Morganucodon, an early Jurassic mammal. Zool J. Linn. Soc. 96:107–117.CrossRefGoogle Scholar
  26. Hennig, W. 1950. Grundzüge einer Theorie der phylogenetischen Systematik. Berlin: Deutscher Zentralverlag.Google Scholar
  27. Kemp, T.S. 1983. The relationships of mammals. Zool J. Linn. Soc. London 77:353–384.CrossRefGoogle Scholar
  28. Kermack, K.A., Mussett, F. 1983. The ear in mammal-like reptiles and early mammals. Acta Palaeont. Pol. 28:147–158.Google Scholar
  29. Kermack, K.A., Mussett, F., Rigney, H.W. 1973. The lower jaw of Morganucodon. Zool J. Linn. Soc. London 53:87–175.CrossRefGoogle Scholar
  30. Kermack, K.A., Mussett, F., Rigney, H.W. 1981. The skull of Morganucodon. Zool. J. Linn. Soc. London 71:1–158.CrossRefGoogle Scholar
  31. Kielan-Jaworowska, Z., Crompton, A.W., Jenkins, F.A. 1987. The origin of egg-laying mammals. Nature 326:871–873.CrossRefGoogle Scholar
  32. Krebs, B. 1971. Evolution of the mandible and lower dentition in dryolestids. In: Early mammals (Kermack, D.M., Kermack, K.A., eds.). Zool. J. Linn. Soc. London 50, Suppl. 1:89–102. New York London: Academic Press.Google Scholar
  33. Krebs, B. 1988. Mesozoische Säugetiere—Ergebnisse von Ausgrabungen in Portugal. Sber. Ges. Naturf Freunde Berlin (N.F.) 28:95–107.Google Scholar
  34. Kuhn, H.-J. 1971. Die Entwicklung und Morphologie des Schädels von Tachyglossus aculeatus. Abh. senckenb. naturforsch. Ges. 528:1–192.Google Scholar
  35. Kuhn, H.-J. 1987. Introduction. In: Morphogenesis of the mammalian skull (Kuhn, H.-J., Zeller, U., eds.). Mammalia depicta 13:9–15. Hamburg, Berlin: Paul Parey.Google Scholar
  36. Kuhn, H.-J., Zeller, U. 1987. The cavum epiptericum in monotremes and therian mammals. In: Morphogenesis of the mammalian skull (Kuhn, H.-J., Zeller, U., eds.). Mammalia depicta 13:51–70. Hamburg, Berlin: Paul Parey.Google Scholar
  37. Maier, W. 1987. Der Processus angularis bei Monodelphis domestica (Didelphidae; Marsupialia) und seine Beziehungen zum Mittelohr: Eine ontogenetische und evo lutionsmorphologische Untersuchung. Morph. Jb. 133: 123–161.Google Scholar
  38. Maier, W. 1990. Phylogeny and ontogeny of mammalian middle ear structures. Proc. Third Intern. Congr. Vertebrate Morphology, Antwerp., Netherlands J. Zoology 40:55–74.Google Scholar
  39. Miao, D., Lillegraven, A. 1986. Discovery of three ear ossicles in a multituberculate mammal. National Geographic Research 2:500–507.Google Scholar
  40. Moore, W.J. 1981. The mammalian skull. Cambridge, New York, Sidney: Cambridge University Press.Google Scholar
  41. Presley, R. 1980. The braincase in recent and mesozoic therapsids. Mem. Soc. Géol. Fr. N. S. 139:159–162.Google Scholar
  42. Presley, R. 1984. The tympanic cavity of Mesozoic mammals. In: Third symposium on Mesozoic terrestrial ecosystems Tübingen 1984 (Reif, W.-E., Westphal, F., eds.). Tübingen: Attempto Verlag, pp. 187–192.Google Scholar
  43. Reichert, C. 1837. Über die Visceralbogen der Wirbeltiere im Allgemeinen und deren Metamorphosen bei den Vögeln und Säugetieren. Müllers Arch. Anat., Physiol., wiss. Med. 1837:120–222.Google Scholar
  44. Schulmann, H. 1906. Vergleichende Untersuchungen über die Trigeminus-Musculatur der Monotremen, sowie die dabei in Betracht kommenden Nerven und Knochen. Semon Zool. Forschungsreisen in Australien 3(2):297–400.Google Scholar
  45. Simpson, G.G. 1945. The principles of classification and a classification of mammals. Bull. Am. Mus. Nat. Hist. 85:1–350.Google Scholar
  46. Starck, D. 1967. Le crâne des Mammifères. In: Traité de Zoologie (Grassé, P. P., ed.). Paris: Masson, Cie, pp. 405–549.Google Scholar
  47. Starck, D. 1978a. Das evolutive Plateau Säugetier. Sonderbd. naturwiss. Ver. Hamburg 3:7–33. Hamburg, Berlin: Paul Parey.Google Scholar
  48. Starck, D. 1978b. Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage, vol. 1. Berlin, Heidelberg, New York: Springer.Google Scholar
  49. Starck, D. 1979. Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage, vol. 2. Berlin, Heidelberg, New York: Springer.Google Scholar
  50. Toeplitz, Ch. 1920. Bau und Entwicklung des Knorpelschädels von Didelphis marsupialis. Zoologica, Stuttg. 27:1–84.Google Scholar
  51. van Kampen, P.N. 1905. Die Tympanalgegend des Säugetierschädels. Morph. 76.34:321–722.Google Scholar
  52. van der Klaauw, C.J. 1931. On the auditory bulla in some fossil mammals, with a general introduction to this region of the skull. Bull. Am. Mus. Nat. Hist. 62:1–340.Google Scholar
  53. Watson, D.M.S. 1916. The monotreme skull: A contribution to mammalian morphogenesis. Phil. Trans, roy. Soc. London B207:311–374.Google Scholar
  54. Werner, C.F. 1960. Das Gehörorgan der Wirbeltiere und des Menschen. Leipzig: Thieme.Google Scholar
  55. Wever, E.G. 1978. The reptile ear. Princeton: Princeton University Press.Google Scholar
  56. Wible, J. 1991. Origin of Mammalia: The craniodental evidence reexamined. J. Vert. Paleont. 11:1–28.CrossRefGoogle Scholar
  57. Zeller, U. 1985a. The morphogenesis of the fenestra rotunda in mammals. In: Functional morphology in vertebrates (Duncker, H.-R., Fleischer, G., eds.). Fortschritte der Zoologie 30:153–157. Stuttgart, New York: G. Fischer.Google Scholar
  58. Zeller, U. 1985b. Die Ontogenese und Morphologie der Fenestra rotunda und des Aquaeductus cochleae von Tupaia und anderen Säugern. Morph. Jb. 131:179–204.Google Scholar
  59. Zeller, U. 1986. Ontogeny and cranial morphology of the tympanic region of the Tupaiidae, with special reference to Ptilocercus. Folia Primatol. 47:61–80.CrossRefGoogle Scholar
  60. Zeller, U. 1987. Morphogenesis of the mammalian skull with special reference to Tupaia. In: Morphogenesis of the mammalian skull (Kuhn, H.-J., Zeller, U., eds.). Mammalia depicta 13:17–50. Hamburg, Berlin: Paul Parey.Google Scholar
  61. Zeller, U. 1989a. Die Entwicklung und Morphologie des Schädels von Ornithorhynchus anatinus (Mammalia: Prototheria: Monotremata). Abh. senckenberg. naturforsch. Ges. 545:1–188.Google Scholar
  62. Zeller, U. 1989b. The braincase of Ornithorhynchus. In: Trends in vertebrate morphology (Splechtna, H., Hilgers, H., eds.). Fortschritte der Zoologie 35:386–391. Stuttgart, New York: G. Fischer.Google Scholar
  63. Zeller, U. 1991. Foramen perilymphaticum und Recessus scalae tympani von Ornithorhynchus anatinus (Monotremata) und anderen Säugern. Verh. Anat. Ges. 84: 441–443.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Ulrich Zeller
    • 1
  1. 1.Institute of AnatomyUniversity of GöttingenGöttingenGermany

Personalised recommendations