Harmonizable Signal Extraction, Filtering and Sampling

  • M. M. Rao


The purpose of this paper is to describe some aspects of analysis on a class of non-stationary and non Gaussian processes dealing with linear filtering, signal extraction from observed data, and sampling the process. The class to be considered consists of harmonizable processes which uses some suitably generalized spectral methods of the classical theory. Let us elaborate these statements.


Covariance Function Spectral Function Output Process Spectral Domain Signal Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bochner, S. (1953), “Fourier transforms of time series,” Proc. Nat. Acad. Set., Vol. 39, 302–307.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bochner, S. (1956), “Stationarity, boundedness, almost periodicity of random valued functions,” Proc. Third Berkeley Symp. Math. Statist, and Prob., Vol. 2, 7–27.MathSciNetGoogle Scholar
  3. 3.
    Cartan, H. (1963), Elementary Theory of Analytic Functions of One and Several Complex Variables, Hermann, Paris.zbMATHGoogle Scholar
  4. 4.
    Chang, D.K., and Rao, M.M. (1983), “Bimeasures and sampling theorems for weakly harmonizable processes,” Stoch. Anal. Appl. Vol. 1, 21–55.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chang, D.K. (1983), Bimeasures, Harmonizable Processes and Filtering, Dissertation, University of California, Riverside, CA.Google Scholar
  6. 6.
    Chatterji, S. D. (1982), “Orthogonally scattered dilation of Hilbert space valued set functions,” ( Oberwolfach Proceedings ), Lect. Notes Math. Vol. 945, 269–281.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cramér, H. (1951), “A contribution to the theory of stochastic processes,” Proc. Second Berkeley Symp. Math. Statist, and Prob., 329–339.Google Scholar
  8. 8.
    Cramér, H. (1971), Structural and Statistical Problems for a Class of Stochastic Processes, Princeton University Press.zbMATHGoogle Scholar
  9. 9.
    Dolph, C.L., and Woodbury, M.A. (1952), “On the relation between Green’s func¬tions and covariances of certain stochastic processes and its application to unbiased linear prediction,” Trans. Amer. Math. Soc., Vol. 72, 519–550.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dunford, N., and Schwartz, J.T. (1958), Linear Operators: Part I, General Theory, Wiley-Interscience, New York.Google Scholar
  11. 11.
    Gikhman, I.I., and Skorokhod, A.V. (1969), Introduction to the Theory of Random Processes, W.B. Saunders Company, Philadelphia, PA.Google Scholar
  12. 12.
    Grenander, U. (1950), “Stochastic processes and statistical inference,” Ark. f. Mat., Vol. 1, 195–277.Google Scholar
  13. 13.
    Hille, E., and Phillips, R.S. (1957), Functional Analysis and Semigroups, Amer. Math. Soc. Collq. PubL, New York.Google Scholar
  14. 14.
    Kampe de Feriet, J., and Frenkiel, F.N. (1962), “Correlation and spectra for nonsta- tionary random functions,” Math. Comp., Vol. 16, 1–21.Google Scholar
  15. 15.
    Karhunen, K. (1947), “Lineare Transformationen stationarer stochastischer Prozesse,” Den. 10 Skandinaviske Matematiker Kongres i Kobenhaven, 320–324.Google Scholar
  16. 16.
    Kelsh, J.P. (1978), Linear Analysis of Harmonizable Time Series, Dissertation, University of California, Riverside, CA.Google Scholar
  17. 17.
    Lloyd, S.P. (1959), “A sampling theorem for stationary (wide sense) stochastic processes,” Trans. Amer. Math. Soc., Vol. 92, 1–12.Google Scholar
  18. 18.
    Loeve, M. (1948), “Fonctions aleatories du second order,” Note in P. Levy’s Processes Stochastique et Movement Brownien, Gauthier-Villars, Paris, 228–352.Google Scholar
  19. 19.
    Loeve, M. (1955), Probability Theory, D. Van Nostrand Company, Princeton, NJ.Google Scholar
  20. 20.
    Morse, M., and Transue, W. (1956), “ (rbimeasures and their integral extensions,” Ann. Math., Vol. 64, 480–504.Google Scholar
  21. 21.
    Nagabhushanam, K. (1951), “The primary process of a smoothing relation,” Ark. f. Math., Vol. 1, 421–488.Google Scholar
  22. 22.
    Niemi, H. (1975), “Stochastic processes as Fourier transforms of stochastic meas¬ures,” Ann. Acad. Scient. Fennicae, Ser. A I, No. Vol. 591, 1–47.Google Scholar
  23. 23.
    Niemi, H. (1977), “On orthogonally scatterred dilations of bounded vector meas¬ures,” Ann. Acad. Scient. Fennicae, Ser. A I. Math., Vol. 3, 43–52.Google Scholar
  24. 24.
    Parzen, E. (1962), “Spectral analysis of asymptotically stationary time series,” Bull. Inst. Internat. Statist., Vol. 39, 87–103.Google Scholar
  25. 25.
    Piranashvili, Z. (1967), “On the problem of interpolation of random processes,” Theor. Probl. Appl., Vol. 7, 647–659.Google Scholar
  26. 26.
    Pourahmadi, M. (1983), “A sampling theorem for multivariate stationary processes,” J. Multivar. Anal., Vol. 13, 177–186.Google Scholar
  27. 27.
    Rao, M.M. (1967), “Inference in stochastic processes-Ill,” Z. Wahrs. Vol. 8, 49–72.Google Scholar
  28. 28.
    Rao, M.M. (1982), “Domination problem for vector measures and applications to nonstationary processes,” (Oberwolfach Proceedings) Lect. Notes Math., Vol. 945, 296–313.Google Scholar
  29. 29.
    Rao, M.M. (1982), “Harmonizable processes: structure theory,” L’Enseign. Math., Vol. 28, 295–351.zbMATHGoogle Scholar
  30. 30.
    Rao, M.M. (1984), “The spectral domain of multivariate harmonizable processes,” Proc. Nat. Acad. Sci., Vol. 82, 4611–4612.CrossRefGoogle Scholar
  31. 31.
    Rozanov, Yu. A. (1959), “Spectral analysis of abstract functions,” Theor. Prob. Appl., Vol. 4, 271–287.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Rozanov, Yu. A. (1967), Stationary Random Processes, Hold en-Day, Inc., San Fran¬cisco, CA.zbMATHGoogle Scholar
  33. 33.
    Yaglom, A.M. (1962), Introduction to the Theory of Stationary Random Functions, Prentice-Hall, Englewood Cliffs, NJ.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • M. M. Rao
    • 1
  1. 1.University of CaliforniaRiversideUSA

Personalised recommendations