Advances in Soil Science pp 57-112

Part of the Advances in Soil Science book series (SOIL, volume 10)

The Components of Nitrogen Availability Assessments in Forest Soils

  • D. Binkley
  • S. C. Hart

Abstract

The availability of nitrogen (N) limits production in many forest ecosystems, and many methods are available for estimating N availability (Keeney, 1980; Binkley 1986; Mahendrappa et al., 1986; Binkley and Vitousek, 1989). The concept of soil availability may represent the rate at which N is converted from unavailable to available forms within the rooting zone (Scarsbrook, 1965). Alternatively, it may refer to the extent to which plant production is constrained by a limited supply of available N. These two aspects of N availability were termed N supply rate and N limitation by Chapin et al. (1986). In agroecosystems, N supply rate and N limitation are often closely linked. In forest ecosystems, differences in species composition, stand age, and soil moisture may uncouple low N supply from N limitation (Chapin et al., 1986). In addition, the nonuniform rooting distribution of trees and the presence of forest floors add spatial complexities to forest N cycles that make it more difficult to estimate N availability in forests than in agroecosystems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J., J.M. Melillo, K. Nadelhoffer, C. McClaugherty, and J. Pastor. 1985. Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: A comparison of two methods. Oecologia 66:317–321.CrossRefGoogle Scholar
  2. Adams, M., and P. Attiwill. 1986a. Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia. I. Nutrient cycling and nitrogen turnover. Plant and Soil 92:319–339.CrossRefGoogle Scholar
  3. Adams, M., and P. Attiwill. 1986b. Nutrient cycling and nitrogen mineralization in eucalypt forests of south-eastern Australia. II. Indices of nitrogen mineralization. Plant and Soil 92:341–362.CrossRefGoogle Scholar
  4. Amato, M., and J.N. Ladd. 1980. Studies of nitrogen immobilization and mineralization in calcareous soils-V. Formation and distribution of isotope-labelled biomass during decomposition of 14C-and 15N-labelled plant material. Soil Biol. Biochem. 12:405–411.CrossRefGoogle Scholar
  5. Amer, R, D. Bouldin, C. Black, and F. Duke. 1955. Characterization of soil phosphorus by anion exchange resin adsorption and P-32 equilibration. Plant and Soil 6:391–408.CrossRefGoogle Scholar
  6. Antonietti, A. 1968. Le associazioni forestall dell’orizzonte submontano del Cantone Ticino su substrati pedogenticic ricchi di carbonati. Mitt. Schweiz. Anst. Forstl. Versuchswes 44:85–226.Google Scholar
  7. Azam F., K.A. Malik, and F. Hussain. 1986. Microbial biomass and mineralizationimmobilization of nitrogen in some agricultural soils. Biol. Pert. Soil 2:157–163.Google Scholar
  8. Barraclough, D., and M.J. Smith. 1987. The estimation of mineralization, immobilization and nitrification in nitrogen-15 field experiments using computer simulation. J. Soil Sci. 38:519–530.CrossRefGoogle Scholar
  9. Barber, S.A. 1974. Influence of the plant root on ion movement in soil. In: E.W. Carson (ed.), The plant root and its environment. Univ. Press of Virginia, Charlotte, pp. 525–564.Google Scholar
  10. Binkley, D. 1982. Nitrogen fixation and net primary production in a young Sitka alder stand. Can. J. Bot. 60:281–284.CrossRefGoogle Scholar
  11. Binkley, D. 1983. Ecosystem production in Douglas-fir plantation: Interaction of red alder and site fertility. For. Ecol. Manage. 5:215–227.CrossRefGoogle Scholar
  12. Binkley, D. 1984a. Does forest removal increase rates of decomposition and nitrogen availability? For. Ecol. Manage. 8:229–233.CrossRefGoogle Scholar
  13. Binkley, D. 1984b. Ion exchange resin bags: Factors affecting estimates of nitrogen availability. Soil Sci. Soc. Am. J. 48:1181–1184.CrossRefGoogle Scholar
  14. Binkley, D. 1986. Forest nutrition management. Wiley, NY. 290 pp.Google Scholar
  15. Binkley, D, and P. Matson. 1983. Ion exchange resin bag method for assessing forest soil nitrogen availability. Soil Sci. Soc. Am. J. 47:1050–1052.CrossRefGoogle Scholar
  16. Binkley, D, and P. Vitousek. 1989. Soil nutrient availability. In: R. Pearcy, H. Mooney, J. Ehleringer, and P. Rundel (eds.), Physiological plant ecology: Field methods and instrumentation. Chapman & Hall, London, pp. 75–96.Google Scholar
  17. Binkley, D., K. Cromack, Jr., and R.L. Fredriksen. 1982. Nitrogen accretion and availability in some snowbrush ecosystems. For. Sci. 28:720–724.Google Scholar
  18. Binkley, D, P. Sollins, and W. McGill. 1985. Natural abundance of nitrogen-15 as a tool for tracing alder-fixed nitrogen. Soil Sci. Soc. Am. J. 49:444–447.CrossRefGoogle Scholar
  19. Binkley, D, J. Aber, J. Pastor, and K. Nadelhoffer. 1986. Nitrogen availability in some Wisconsin forests: Comparisons of resin bags and on-site incubations. Biol, and Fert. of Soils 2:77–82.Google Scholar
  20. Binkley, D., P. Sollins, R. Bell, D. Sachs, and C. Glassman. In review. Biogeochemistry of adjacent conifer and alder/conifer ecosystems. Submitted to Ecology.Google Scholar
  21. Birch, H.F. 1958. The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil 10:9–31.CrossRefGoogle Scholar
  22. Birch, H.F. 1960. Nitrification in soils after different periods of dryness. Plant and Soil 12:81–96.CrossRefGoogle Scholar
  23. Bloss, S., and D. Binkley. In review. Effect of rooting by wild boars on nitrogen mineralization in high elevation beech forests of the southern Appalachians. Submitted to Can. J. For. Res. Google Scholar
  24. Bonde, T. A., and T. Rosswall. 1987. Seasonal variation of potentially mineralizable nitrogen in four cropping systems. Soil Sci. Soc. Am. J. 51:1508–1514.CrossRefGoogle Scholar
  25. Bremner, J. 1965. Nitrogen availability index. In. C. Black (ed.), Methods of soil analysis, part 2. Am. Soc. Agron., Madison, WI, pp. 1324–1345.Google Scholar
  26. Bremner, I, and C. Mulvaney. 1982. Nitrogen-total. In: A. Page, R. Miller, and D. Keeney (eds.), Methods of soil analysis, part 2, chemical and microbiological properties. Am Soc. Agron., Madison, WI, pp. 595–624.Google Scholar
  27. Brookes, P.C., A. Landman, G. Pruden, and D.S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17:837–842.CrossRefGoogle Scholar
  28. Burger, J., and W. Pritchett. 1984. Effects of clearfelling and site preparation on nitrogen mineralization in a Southern pine stand. Soil Sci. Soc. Am. J. 48:1432–1437.CrossRefGoogle Scholar
  29. Carter, M.R. 1986. Microbial biomass and mineralizable nitrogen in solonetzic soils: Influence of gypsum and lime amendments. Soil Biol. Biochem. 18:531–537.CrossRefGoogle Scholar
  30. Carter, M.R., and J.A. Macleod. 1987. Biological properties of some Prince Edward Island soils: Relationship between microbial biomass nitrogen and mineralizable nitrogen. Can. J. Soil Sci. 67:333–340.CrossRefGoogle Scholar
  31. Carter, M.R., and D.A. Rennie. 1982. Changes in soil quality under zero tillage farming systems: distribution of microbial biomass and mineralizable C and N potentials. Can. J. Soil Sci. 62:587–597.CrossRefGoogle Scholar
  32. Chapin, F.S.H. III, K. Van Cleve, and P. Vitousek. 1986. The nature of nutrient limitation in plant communities. Am. Naturalist 127:148–158.Google Scholar
  33. Christensen, N., and T. MacAller. 1985. Soil mineral nitrogen transformations during succession in the Piedmont of North Carolina. Soil Biol. Biochem. 17:675–681.CrossRefGoogle Scholar
  34. Covington, W., and S. Sackett. 1986. Effect of periodic burning on soil nitrogen concentrations in ponderosa pine. Soil Sci. Soc. Am. J. 50:452–457.CrossRefGoogle Scholar
  35. Deans, J.R., J. Molina, and C. Clapp. 1986. Models for predicting potentially mineralizable nitrogen and decomposition rate constants. Soil Sci. Soc. Am. J. 50:323–326.CrossRefGoogle Scholar
  36. Di Stefano, J. 1984. Nitrogen mineralization and non-symbiotic nitrogen fixation in an age sequence of slash pine plantations in north Florida. Ph.D. diss., Univ. of Florida, Gainesville, pp. 219.Google Scholar
  37. Di Stefano, J., and H. Gholz. 1986. A proposed use of ion exchange resin to measure nitrogen mineralization and nitrification in intact soil cores. Comm. Soil Sci. Plant Anal. 17:989–998.CrossRefGoogle Scholar
  38. Ellenberg, H. 1977. Stickstoff als Standortsfaktor, insbesondere für mitteleuropäische Pflanzengesellschaften. Oecologia Plantarum 12:1–22.Google Scholar
  39. Eno, C. 1960. Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci. Soc. Am. Proc. 24:277–279.CrossRefGoogle Scholar
  40. Fahey, T.J., J. Yavitt, J. Pearson, and D Knight. 1985. The nitrogen cycle in lodgepole pine forests, southeastern Wyoming. Biogeochem. 1:257–275.CrossRefGoogle Scholar
  41. Federer, C.A. 1983. Nitrogen mineralization and nitrification: Depth variation in four New England forest soils. Soil Sci. Soc. Am. J. 47:1008–1014.CrossRefGoogle Scholar
  42. Feigin, A., D Kohl, G. Shearer, and B. Commoner. 1974. Variation in the natural nitrogen-15 abundance in nitrate mineralized during incubation of several Illinois soils. Soil Sci. Soc. Am. Proc. 38:90–95.CrossRefGoogle Scholar
  43. Fisher, R., and E. Stone. 1969. Increased availability of nitrogen and phosphorus in the root zone of conifers. Soil Sci. Soc. Am. Proc. 33:955–961.CrossRefGoogle Scholar
  44. Flanagan, P., and K. Van Cleve. 1983. Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. For. Res. 13:795–817.CrossRefGoogle Scholar
  45. Foster, N., E. Beauchamp, and C. Corke. 1985. Immobilization of nitrogen-15 labelled urea in a jack pine forest floor. Soil Sci. Soc. Am. J. 49:448–452.CrossRefGoogle Scholar
  46. Fox, T., J. Burger, and R. Kreh. 1986. Effects of site preparation on nitrogen dynamics in the southern Piedmont. For. Ecol. Manage. 15:241–256.CrossRefGoogle Scholar
  47. Frazer, D, J. McColl, and R. Powers. In review. Mineralization of soil nitrogen in a managed, mixed-conifer forest in northern California. Submitted to Soil Sci. Soc. Am. J. Google Scholar
  48. Fyles, J.W., and W.B. McGill. 1987. Nitrogen mineralization in forest profiles from central Alberta. Can. J. For. Res. 17:242–249.CrossRefGoogle Scholar
  49. Geist, J.M. 1977. Nitrogen response relationship of some volcanic ash soils. Soil Sci. Soc. Am. J. 41:996–1000.CrossRefGoogle Scholar
  50. Gianello, C., and J. Bremner. 1986. Comparison of chemical methods of assessing potentially available organic nitrogen in soil. Comm. Soil Sci. Plant Anal. 17:215–236.CrossRefGoogle Scholar
  51. Gibson, D., I. Colquhoun, and P. Greig-Smith. 1985. A new method for measuring nutrient supply rates in soils using ion-exchange resins. In: A.H. Fitter (ed.), Ecological interactions in soils: Plants, microbes, and animals. Blackwell, Oxford, pp. 73–79.Google Scholar
  52. Gilliam, F., and D. Richter. 1985. Increases in extractable ions in infertile aquults caused by sample preparation. Soil Sci. Soc. Am. J. 49:1576–1578.CrossRefGoogle Scholar
  53. Glavac, V., and H. Koenies. 1978a. Mineralstickstoff-Gehalte und N-Nettomineralisation im Boden eines Fictenforstes und seines Kahlschlages wahrend der Vegetationsperiode 1977. Oecologia Plantarum 13:207–218.Google Scholar
  54. Glavac, V., and H. Koenies. 1978b. Vergleiche der N-Nettomineralisation in einem Sauerhumus-Buchenwald (Luzulo-Fagetum) und einem benachbarten Fictenforst am gleichen Standort vor und nach dem Kahlschlag. Oecologia Plantarum 13:219–226.Google Scholar
  55. Gordon, A., and K. Van Cleve. 1983. Seasonal patterns of nitrogen mineralization following harvesting in the white spruce forests of interior Alaska. In: R.W. Wein, R.R. Riewe, and I.R. Methven (eds.), Resources and dynamics of the boreal zone. Assoc. Can. Univ. North. Stud., Ottawa, pp. 119–130.Google Scholar
  56. Gordon, A., M. Tallas, and K. Van Cleve. 1987. Soil incubations in polyethylene bags: Effect of bag thickness and temperature on nitrogen transformations and CO2 permeability. Can. J. Soil Sci. 67:65–75.CrossRefGoogle Scholar
  57. Gosz, J.R., and C.S. White. 1986. Seasonal and annual variation in nitrogen mineralization and nitrification along an elevational gradient in New Mexico. Biogeochem. 2:281–297.CrossRefGoogle Scholar
  58. Harmer, R., and I. Alexander. 1985. Effects of root exclusion on nitrogen transformations and decomposition processes in spruce humus. In: A. Fitter (ed.), Ecological interactions in soil: Plants, microbes and animals. Blackwell, Oxford, pp. 267–277Google Scholar
  59. Harmer, R., and I. Alexander. 1986. The effect of starch amendment on nitrogen mineralisation from the forest floor beneath a range of conifers. Forestry 59:39–46.CrossRefGoogle Scholar
  60. Hart, S.C. 1988. Carbon and nitrogen accretion and dynamics in volcanic ash deposits from different subarctic habitats. Biol. Fert. Soils. In press.Google Scholar
  61. Hart, S.C, and D. Binkley. 1985. Correlations among indices of forest soil nutrient availability in fertilized and unfertilized loblolly pine plantations. Plant and Soil 85:11–21.CrossRefGoogle Scholar
  62. Hart, S.C, and M.K. Firestone. 1989. Evaluation of three in situ nitrogen availability assays. In press. Can. J. For. Res. Google Scholar
  63. Hart, S.C, and A.J. Gunther. In-situ estimate of annual net nitrogen mineralization and nitrification in a subarctic watershed. Oecologia. In review.Google Scholar
  64. Hart, S.C, D. Binkley, and R.G. Campbell. 1986. Predicting loblolly pine growth and growth response to fertilization. Soil Sci. Soc. Am. J. 50:230–233.CrossRefGoogle Scholar
  65. Hauck, R., and J. Bremner. 1976. Use of tracers for soil and fertilizer nitrogen research. Adv. Agron. 28:219–266.CrossRefGoogle Scholar
  66. Hedman, C., and D. Binkley. 1988. Canopy profiles of some Piedmont hardwood forests. Can. J. For. Res. 18:1090–1093.CrossRefGoogle Scholar
  67. Heilman, P.E., T.H. Dao, H.H. Cheng, S.R. Webster, and L. Christensen. 1982. Comparison of fall and spring applications of 15N-labeled urea to Douglas-fir: II. Fertilizer nitrogen recovery in trees and soil after 2 years. Soil Sci. Soc. Am. J. 46:1300–1304.CrossRefGoogle Scholar
  68. Jansson, S.L. 1958. Tracer studies on nitrogen transformations in soil with special attention to mineralization-immobilization relationships. Ann. Roy. Agr. Coll. Sweden 24:101–361.Google Scholar
  69. Jansson, S.L. 1971. Use of 15N in studies of soil nitrogen. In: A.D. McLaren and J. Skujins (eds.), Soil Biochemistry, vol. 2. Marcel Dekker, NY, pp. 129–166.Google Scholar
  70. Jansson, S.L., and J. Persson. 1982. Mineralization and immobilization of soil nitrogen. In: F.J. Stevenson (ed.), Nitrogen in Agricultural Soils. Am. Soc. Agron., Madison, WI, pp. 229–252.Google Scholar
  71. Jenkinson, D.S., and J.N. Ladd. 1981. Microbial biomass in soil: Measurement and turnover. In: E.A. Paul and J.N. Ladd (eds.), Soil Biochemistry, vol. 5. Marcel Dekker, NY, pp. 415–471.Google Scholar
  72. Jenkinson, D.S., and D.S. Powlson. 1976. The effects of biocidal treatments on metabolism in soil. V: A method for measuring soil biomass. Soil Biol. Biochem. 8:209–213.CrossRefGoogle Scholar
  73. Johnson, D.W., N.T. Edwards, and D.E. Todd. 1980. Nitrogen mineralization, immobilization, and nitrification following urea fertilization of a forest soil under field and laboratory conditions. Soil Sci. Soc. Am. J. 44:610–616.CrossRefGoogle Scholar
  74. Kadeba, O., and J. Boyle. 1978. Evaluation of phosphorus in forest soils: Comparison of phosphorus uptake, extraction method and soil properties. Plant and Soil 49:285–297.CrossRefGoogle Scholar
  75. Keeney, D. 1980. Prediction of soil nitrogen availability in forest ecosystems: A literature review. For. Sci. 26:159–171.Google Scholar
  76. Keeney, D. 1982. Nitrogen-availability indices. In: A. Page, R. Miller, and D. Keeney (eds.), Methods of soil analysis, part 2, chemical and microbiological properties. Am. Soc. Agron., Madison, WI, pp. 711–734.Google Scholar
  77. Keeney, D., and J. Bremner. 1966. A chemical index of soil nitrogen availability. Nature 211:892–893.PubMedCrossRefGoogle Scholar
  78. Keeney, D., and D. Nelson. 1982. Nitrogen-inorganic forms. In: A. Page, R. Miller, and D. Keeney (eds.), Methods of soil analysis, part 2, chemical and microbiological properties. Am. Soc. Agron., Madison, WI, pp. 643–698.Google Scholar
  79. Kirkham, D., and W.V. Bartholomew. 1954. Equations for following nutrient transformations in soil, utilizing tracer data. Soil Sci. Soc. Am. Proc. 18:33–34.CrossRefGoogle Scholar
  80. Kirkham, D., and W.V. Bartholomew. 1955. Equations for following nutrient transformations in soil, utilizing tracer data: II. Soil Sci. Soc. Am. Proc. 19:189–192.CrossRefGoogle Scholar
  81. Knowles, R. 1975. Interpretation of recent 15N studies of nitrogen in forest systems. In: B. Bernier and C.H. Winget (eds.), Forest soils and forest land management. Proc. of the 4th N. Am. For. Soil Conf., Laval Univ., Quebec. August 1973. Laval Univ. Press, pp. 53–65.Google Scholar
  82. Kohl, D., G. Shearer, and J. Harper. 1980. Estimates of N2 fixation based on differences in the natural abundance of 15N in nodulating and nonnodulating isolines of soybeans. Plant Physiol. 66:61–65.PubMedCrossRefGoogle Scholar
  83. Kovacs, M. 1978. Stickstoffverhältnisse im Boden des Eichen-Zerreichen-Walkokosystems. Oecologia Plantarum 13:75–82.Google Scholar
  84. Krause, H., and D. Ramlal. 1987. In situ nutrient extraction by resin from forested, clearcut and site-prepared soil. Can. J. Soil Sci. 67:943–952.CrossRefGoogle Scholar
  85. Kutiel, P., and Z. Naveh. 1987. The effect of fire on nutrients in a pine forest soil. Plant and Soil 104:269–274.CrossRefGoogle Scholar
  86. Labrouse, L., W. Vidal, J.C. Tosca, and P.H. Berge. 1985. Transferts d’azote mineral dans les sols froids: Essai de tracage isotopique in situ. Soil Biol. Biochem. 17:683–689.CrossRefGoogle Scholar
  87. Lajtha, K. 1988. The use of ion-exchange resin bags for measuring nutrient availability in an arid ecosystem. Plant and Soil 105:105–111.CrossRefGoogle Scholar
  88. Lamb, D. 1975. Patterns of nitrogen mineralization in the forest floor of stands of Pinus radiata on different soils. J. Ecol. 63:615–625.CrossRefGoogle Scholar
  89. Lamb, D. 1980. Soil nitrogen mineralisation in a secondary rainforest succession. Oecologia (Berl.) 47:257–263.CrossRefGoogle Scholar
  90. Lea, R., and R. Ballard. 1982. Predicting loblolly pine growth response from N fertilizer, using soil-N availability indices. Soil Sci. Soc. Am. J. 46:1096–1099.CrossRefGoogle Scholar
  91. Lemée, G. 1967. Investigations sur la minéralisation de l’azote et son évolution annuelle dans des humus forestiers in situ. Oecologia Plantarum 2:285–324.Google Scholar
  92. Mahendrappa, M. 1980. Relationships between different estimates of mineralizable N in the organic materials under black spruce stands. Can. J. For. Res. 10:517–522.CrossRefGoogle Scholar
  93. Mahendrappa, J., N. Foster, G. Weetman, and H. Krause. 1986. Nutrient cycling and availability in forest soils. Can. J. Soil Sci. 66:547–572.CrossRefGoogle Scholar
  94. Maimone, R., L. Morris, and T. Fox. 1987. Nitrogen mineralization potential in a Lower Coastal Plain forest soil. Agron. Abstr. 1987:261.Google Scholar
  95. Marion, G., and C. Black. 1987. The effect of time and temperature on nitrogen mineralization in arctic tundra soils. Soil Sci. Soc. Am. J. 51:1501–1508.CrossRefGoogle Scholar
  96. Marumoto, T., H. Kai, T. Yoshida, and T. Harada. 1977a. Drying effect on mineralization of microbial cells and their cell walls in soil and contribution of microbial cell walls as a source of decomposable soil organic matter due to drying. Soil Sci. Plant Nutr. 23:9–19.Google Scholar
  97. Marumoto, T., H. Kai, T. Yoshida, and T. Harada. 1977b. Relationship between an accumulation of soil organic matter becoming decomposable due to drying of soil and microbial cells. Soil Sci. Plant Nutr. 23:1–8.Google Scholar
  98. Marumoto, T., J.P.E. Anderson, and K.H. Domsch. 1982a. Decomposition of 14C-and 15N-labelled microbial cells in soil. Soil Biol. Biochem. 14:461–467.CrossRefGoogle Scholar
  99. Marumoto, T., J.P.E. Anderson, and K.H. Domsch. 1982b. Mineralization of nutrients from soil microbial biomass. Soil Biol. Biochem. 14:469–475.CrossRefGoogle Scholar
  100. Matson, P., and R. Boone. 1984. Natural disturbance and nitrogen mineralization: Wave-form dieback of mountain hemlock in the Oregon Cascades. Ecology 65:1511–1516.CrossRefGoogle Scholar
  101. Matson, P., and P. Vitousek. 1981. Nitrogen mineralization and nitrification potentials following clearcutting in the Hoosier National Forest, Indiana. For. Sci. 27:781–791.Google Scholar
  102. Matson, P., P. Vitousek, J. Ewel, M. Mazzarino, and P. Robertson. 1987. Nitrogen transformations following tropical forest felling and burning on a volcanic soil. Ecology 68:491–502.CrossRefGoogle Scholar
  103. McNabb, D.H. 1984. Handling and storage of soil samples. In: Nitrogen Assessment Workshop, Regional Forest Nutrition Research Project Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, pp. 32–34.Google Scholar
  104. Mead, D., and W. Pritchett. 1971. A comparison of tree response to fertilizers in field and pot experiments. Soil Sci. Soc. Am. Proc. 35:246–349.CrossRefGoogle Scholar
  105. Mead, D.J., and W.L. Pritchett. 1975. Fertilizer movement in a slash pine ecosystem. II. N distribution after two growing seasons. Plant and Soil 43:467–478.CrossRefGoogle Scholar
  106. Melillo, J. 1977. Mineralization of nitrogen in northern forest ecosystems. Ph.D. diss., Yale Univ. Diss. Abstr. 38:3026–B.Google Scholar
  107. Melillo, J. 1981. Nitrogen cycling in deciduous forests. In: F. Clark, and T. Rosswall (eds.), Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm) 33:427–442.Google Scholar
  108. Melin, J., H. Nommik, U. Lohm, and J. Flower-Ellis. 1983. Fertilizer nitrogen budget in a Scots pine ecosystem attained by using root-isolated plots and 15N tracer technique. Plant and Soil 74:249–263.CrossRefGoogle Scholar
  109. Miller, H., J. Cooper, and J. Miller. 1976. Effect of nitrogen supply on nutrient uptake in a stand of Corsican pine. J. Appl. Ecol. 13:955–966.CrossRefGoogle Scholar
  110. Mladenoff, D. 1987. Dynamics of nitrogen mineralization and nitrification in hemlock and hardwood treefall gaps. Ecology 68:1171–1180.CrossRefGoogle Scholar
  111. Montagnini, F., B. Haines, L. Boring, and W. Swank. 1986. Nitrification potentials in early successional black locusts and in mixed hardwood forest stands in the southern Appalachians, USA. Biogeochem. 2:197–210.CrossRefGoogle Scholar
  112. Myrold, D.D. 1987. Relationship between microbial biomass nitrogen and a nitrogen availability index. Soil Sci. Soc. Am. J. 51:1047–1049.CrossRefGoogle Scholar
  113. Myrold, D.D., J.M. Tiedje. 1986. Simultaneous estimation of several nitrogen cycle rates using 1 5N: Theory and application. Soil Biol. Biochem. 18:559–568.CrossRefGoogle Scholar
  114. Nadelhoffer, K., J. Aber, and J. Melillo. 1983. Leaf-litter production and soil organic matter dynamics along a nitrogen-availability gradient in Southern Wisconsin (U.S.A.).Can. J. For. Res. 13:12–21.CrossRefGoogle Scholar
  115. Németh, K., I. Makhdum, K. Koch, and H. Beringer. 1979. Determination of categories of soil nitrogen by electro-ultrafiltration (EUF). Plant and Soil 53:445–453.CrossRefGoogle Scholar
  116. Nishio, T, T. Kanamori, and T. Fujimoto. 1985. Nitrogen transformation in aerobic soil as determined by a 15NH4 + dilution technique. Soil Biol. Biochem. 17:149–154.CrossRefGoogle Scholar
  117. Nordmeyer, H., and J. Richter. 1985. Incubation experiments on nitrogen mineralization in loess and sandy soils. Plant and Soil 83:443–445.CrossRefGoogle Scholar
  118. Olson, R., and W. Reiners. 1983. Nitrification in subalpine balsam fir soils: Tests for inhibitory factors. Soil Biol. Biochem. 15:413–418.CrossRefGoogle Scholar
  119. Pastor, J., and W.M. Post. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochem 2:3–27.CrossRefGoogle Scholar
  120. Pastor, J., and W.M. Post. 1988. Response of northern forests to CO2-induced climate change. Nature. In press.Google Scholar
  121. Pastor, J., M.A. Stillwell, and D. Tilman. 1987a. Nitrogen mineralization and nitrification in four Minnesota old fields. Oecologia 71:481–485.CrossRefGoogle Scholar
  122. Pastor, I, J. Aber, C. McClaugherty, and J. Melillo. 1984. Aboveground production and N and P cycling along a nitrogen mineralization gradient on Blackhawk Island, Wisconsin. Ecology 65:256–268.CrossRefGoogle Scholar
  123. Pastor, J., R. Garner, V. Dale, and W. Post. 1987b. Successional changes in nitrogen availability as a potential factor contributing to spruce declines in boreal North America. Can. J. For. Res. 17:1394–1400.CrossRefGoogle Scholar
  124. Paul, E.A., and N.G. Juma. 1981. Mineralization and immobilization of soil nitrogen by microorganisms. In: E.E. Clark and T. Rosswall (eds.), Terrestrial nitrogen cycles. Ecol. Bull. (Stockholm), 33:179–195.Google Scholar
  125. Paul, E.A., J.L. Smith, and J.M. Norton. 1986. The decomposition of 14C-and 15N-labeled cells in soil under anaerobic conditions. Agron. Abst. 1986:186.Google Scholar
  126. Peterson, B., and B. Fry. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Syst. 18:293–320.CrossRefGoogle Scholar
  127. Peterson, C., P. Ryan, and S. Gessel. 1984. Response of Northwest Douglas-fir stands to urea: Correlations with forest soil properties. Soil Sci. Soc. Am. J. 48:162–169.CrossRefGoogle Scholar
  128. Pfadenhauer, J. 1979. Die Stickstoffmineralisation in Böden subtropischer Regenwälder in Südbrasilien. Oecologia Plantarum 14:27–40.Google Scholar
  129. Poovarodom, S., R. Tate, and R. Bloom. 1988. Nitrogen mineralization rates of the acidic, xeric soils of the New Jersey pinelands: Field rates. Soil Science 145:257–263.CrossRefGoogle Scholar
  130. Post, W.M., J. Pastor, P. Zinke, and A. Stangenberger. 1985. Global patterns of soil nitrogen storage. Nature 317:613–616.CrossRefGoogle Scholar
  131. Powers, R. 1980. Mineralizable soil nitrogen as an index of nitrogen availability to forest trees. Soil Sci. Soc. Am. J. 44:1314–1320.CrossRefGoogle Scholar
  132. Powers, R. 1984a. Estimating soil nitrogen availability through soil and foliar analysis. In: E. Stone (ed.), Forest soils and treatment impacts. Proc. of the 6th N. Am. For. Soils Conf. Univ. of Tennessee, Knoxville, August 1983, pp 353–379.Google Scholar
  133. Powers, R.F. 1984b. Site productivity and soil nitrogen status. In: Nitrogen assessment workshop, Regional Forest Nutrition Research Project Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, pp. 60–68.Google Scholar
  134. Powers, R.F. 1984c. Sources of variation in mineralizable soil nitrogen. In: Nitrogen assessment workshop, Regional Forest Nutrition Research Project Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, pp. 25–31.Google Scholar
  135. Powers, R. 1987. Soil nitrogen mineralization along an altitudinal gradient: Influence of soil temperature and moisture. Presented in IUFRO Conf. on Management of Water and Nutrient Relations to Increase Forest Growth, Canberra, ACT, October 19–22, 1987.Google Scholar
  136. Radwan, M., and J. Shumway. 1983. Soil nitrogen, sulfur, and phosphorus in relation to growth response of western hemlock to nitrogen fertilization. For. Sci. 29:469–477.Google Scholar
  137. Raison, R., M. Connell, and P. Khanna. 1987a. Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 19:521–530.CrossRefGoogle Scholar
  138. Raison, R., P. Khanna, M. Connell, and R. Falkiner. 1987b. Effects of water supply and fertilization on N cycling in a stand of Pinus radiata. Presented at IUFRO Conf. on Management of Water and Nutrient Relations to Increase Forest Growth, Canberra, ACT, October 19–22, 1987.Google Scholar
  139. Rapp, M., M. Leclerc, and P. Lossaint. 1979. The nitrogen economy in a Pinus pinea L. stand. For. Ecol. Manage. 2:221–231.CrossRefGoogle Scholar
  140. Rashid, G. 1987. Effects of fire on soil carbon and nitrogen in a Mediterranean oak forest of Algeria. Plant and Soil 103:89–93.CrossRefGoogle Scholar
  141. Rescigno, A., and G. Segre. 1966. Drug and Tracer Kinetics. Blaisdell, Waltham, MS, 209 pp.Google Scholar
  142. Rice, E., and S. Pancholy. 1972. Inhibition of nitrification by climax ecosystems. Am. J. Bot. 59:1033–1040.CrossRefGoogle Scholar
  143. Robertson, G.P. 1987. Geostatistics in ecology: Interpolating with known variance. Ecology 68:744–748.CrossRefGoogle Scholar
  144. Robertson, G.P., and P. Vitousek. 1981. Nitrification potentials in primary and secondary succession. Ecology 62:376–386.CrossRefGoogle Scholar
  145. Robertson, G.P, M.A. Houston, F.C. Evans, and J.M. Tiedje. 1988. Spatial variability in a successional plant community: Patterns of nitrogen availability. Ecology 69:1517–1524.CrossRefGoogle Scholar
  146. Runge, M. 1971. Investigations of the content and the production of mineral nitrogen in soils. In: H. Ellenberg (ed.), Integrated experimental ecology: Methods and results of ecosystem research in the German Soiling Project. Springer-Verlag, NY, pp. 191–202.Google Scholar
  147. Runge, M. 1974. Die Stickstoff-Mineralisation im Boden eines Sauerhumus-Buchenwaldes. I. Mineralstickstoff-Gehalt und Netto-Mineralisation. Oceologia Plantarum 9:201–218.Google Scholar
  148. Ryan, M., and W. Covington. 1986. Effect of a prescribed burn in ponderosa pine on inorganic nitrogen concentrations of mineral soil. USDA For. Ser. Res. Note RM-464, Ft. Collins, COGoogle Scholar
  149. Safford, L. 1982. Correlation of greenhouse bioassay with field response to fertilizer by paper birch. Plant and Soil 64:167–176.CrossRefGoogle Scholar
  150. Sahrawat, K.L. 1980. Soil and fertilizer nitrogen transformations under alternate flooding and drying moisture regimes. Plant and Soil 55:225–233.CrossRefGoogle Scholar
  151. Sasser, C., and D. Binkley. 1988. Nitrogen mineralization in high elevation forests of the Appalachians. II. Patterns with stand development in fir waves. Biogeochem. in press.Google Scholar
  152. Satterson, K. 1985. Nitrogen availability, primary production, and nutrient cycling during secondary succession in North Carolina Piedmont forests. Ph.D. diss., Univ. of North Carolina, Chapel Hill, pp. 57–59.Google Scholar
  153. Scarsbrook, C.E. 1965. Nitrogen availability. In: W.V. Bartholomew and F.E. Clark (eds.), Soil nitrogen agronomy, Am. Soc. Agron., Madison, WI, 10:481–502.Google Scholar
  154. Schimel, D.S., and G. Innis. 1986. Quantification of nitrogen turnover: Models of isotope dilution in soils. Ecol Soc. Am. Abst. 1986:300.Google Scholar
  155. Schimel, J.P. 1987. Plant/microbial competition for nitrogen in California forest and grassland. Ph.D. diss., Univ. of California, Berkeley, 156 pp.Google Scholar
  156. Seneviratne, R., and A. Wild. 1985. Effect of mild drying on the mineralization of soil nitrogen. Plant and Soil 84:175–179.CrossRefGoogle Scholar
  157. Shen, S.M., G. Pruden, and D.S. Jenkinson. 1984. Mineralization and immobilization of nitrogen infumigated soil and the measurement of microbial biomass nitrogen. Soil Biol. Biochem. 16:437–444.CrossRefGoogle Scholar
  158. Shipley, R.A., and R.E. Clark. 1972. Tracer methods for in vivo kinetics. Academic Press, NY, 239 pp.Google Scholar
  159. Shumway, J. 1984. Total nitrogen, mineralizable nitrogen and site index as guides to fertilization of Douglas-fir. In: Nitrogen assessment workshop, May 19–20, 1982, RFNRP Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, p. 57–59.Google Scholar
  160. Shumway, J., and W.A. Atkinson. 1978. Predicting nitrogen fertilizer response in unthinned stands of Douglas-fir. Comm. Soil Sci. Plant Anal. 9:529–539.CrossRefGoogle Scholar
  161. Sibbeson, E. 1977. A simple ion-exchange resin procedure for extracting plant-available elements from soil. Plant and Soil 46:665–669.CrossRefGoogle Scholar
  162. Smith, J.L., J. Norton, E.A. Paul. 1985. Microbial biomass estimations. In: J.L. Smith and E.A. Paul (eds.), Process controls and nitrogen transformations in terrestrial ecosystems, Dept. of Plant and Soil Biology, Univ. of California, Berkeley, pp. 94–108.Google Scholar
  163. Smith, J.L., B.L. McNeal, E.J. Owens, and G.O. Klock. 1981. Comparison of nitrogen mineralized under anaerobic and aerobic conditions for some agricultural and forest soils of Washington. Comm. Soil Sci. Plant. Anal. 12:997–1009.CrossRefGoogle Scholar
  164. Sollins, P., G. Sphycher, and C.A. Glassman. 1984. Net nitrogen mineralization from light-and heavy-fraction forest soil organic matter. Soil Biol. Biochem. 16:31–37.CrossRefGoogle Scholar
  165. Sparling, G.P., and D.J. Ross. 1988. Microbial contributions to increased nitrogen mineralization after air-drying of soils. Plant and Soil 105:163–167.CrossRefGoogle Scholar
  166. Stanford, G, and W. Demar. 1969. Extraction of soil organic nitrogen by autoclaving in water: I. The NaOH-distillable fraction as an index of nitrogen availability in soils. Soil Sci. 107:203–205.CrossRefGoogle Scholar
  167. Stanford, G, and E. Epstein. 1974. Nitrogen mineralization-water relations in soils. Soil Sci. Soc. Am. Proc. 38:103–107.CrossRefGoogle Scholar
  168. Stanford, G, and S. Smith. 1972. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Am. Proc. 36:465–472.CrossRefGoogle Scholar
  169. Stanford, G, J. Carter, and S. Smith. 1974. Estimates of potentially mineralizable soil nitrogen based on short-term incubations. Soil Sci. Soc. Am. Proc. 38:99–103.CrossRefGoogle Scholar
  170. Strader, R., D. Binkley, and C. Wells. 1988. Nitrogen mineralization in high elevation forests of the Appalachians. I. Regional patterns in southern spruce-fir forests. Biogeochem. in press.Google Scholar
  171. Talpaz, H., P. Fine, and B. Bar-Yosef. 1981. On the estimation of N-mineralization parameters from incubation experiments. Soil Sci. Soc. Am. J. 45:993–996.CrossRefGoogle Scholar
  172. Thorne, J., and S. Hamburg. 1985. Nitrification potentials of an old-field chronosequence in Campton, New Hampshire. Ecology 66:1333–1338.CrossRefGoogle Scholar
  173. Thorne, J., A. Friedland, E. Miller, and J. Battles. 1987. Nitrification and nitrogen mineralization in an Adirondack spruce-fir sere. Bull. Ecol. Soc. Am. 68:429.Google Scholar
  174. Turner, D.P., and E.H. Franz. 1985. The influence of western hemlock and western redcedar on microbial numbers, nitrogen mineralization, and nitrification. Plant and Soil 88:259–267.CrossRefGoogle Scholar
  175. Van Cleve, K., and R. White. 1980. Forest-floor nitrogen dynamics in a 60-year-old paper birch ecosystem in interior Alaska. Plant and Soil 54:359–381.CrossRefGoogle Scholar
  176. Van Praag, H., and F. Weissen. 1973. Elements of a functional definition of oligotroph humus based on the nitrogen nutrition of forest stands. J. Appl. Ecol. 10:569–583.CrossRefGoogle Scholar
  177. Van Schreven, D.A. 1967. The effect of intermittent drying and wetting of a calcareous soil on carbon and nitrogen mineralization. Plant and Soil 26:14–32.CrossRefGoogle Scholar
  178. Virzo De Santo, A., Al Alfani, and A. Fioretto. 1982. Nitrogen mineralization in southern beech forests. Pedobiologica 23:348–357.Google Scholar
  179. Vitousek, P. 1982. Nutrient cycling and nutrient use efficiency. Am. Naturalist 119:553–572.CrossRefGoogle Scholar
  180. Vitousek, P.M., and S.W Andraiese. 1986. Microbial transformations of labelled nitrogen in a clear-cut pine plantation. Oecologia (Berl.) 68:601–605.CrossRefGoogle Scholar
  181. Vitousek, P., and P. Matson. 1985. Disturbance, nitrogen availability, and nitrogen losses in an intensively managed loblolly pine plantation. Ecology 66:1360–1376.CrossRefGoogle Scholar
  182. Vitousek, P.M., J.R. Gosz, C.C. Grier, J.M. Melillo, and W.A. Reiners. 1982. A comparative analysis of potential nitrification and nitrate mobility in forest ecosystems. Ecol. Monogr. 52:155–177.CrossRefGoogle Scholar
  183. Vogt, K., C. Grier, and D. Vogt. 1986. Production, turnover, and nutrient dynamics of above-and belowground detritus of world forests. Advan. Ecol. Res. 14:303–337.CrossRefGoogle Scholar
  184. Voroney, R.P., and E.A. Paul. 1984. Determination of k C and k N in situ for calibration of the chloroform fumigation-incubation method. Soil Biol. Biochem. 16:9–14.CrossRefGoogle Scholar
  185. Waring, R.H., K. Cromack, Jr., P. Matson, R. Boone, and S. Stafford. 1987. Responses to pathogen-induced disturbance: Decomposition, nutrient availability, and tree vigour. Forestry 60:219–227.CrossRefGoogle Scholar
  186. Waring, S. A., and J.M. Bremner. 1964. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201:951–952.CrossRefGoogle Scholar
  187. Weber, M.G., and K. Van Cleve. 1984. Nitrogen transformations in feather moss and forest floor layers of interior Alaska black spruce ecosystems. Can. J. For. Res. 14:278–290.CrossRefGoogle Scholar
  188. Webster, R. 1985. Quantitative spatial analysis of soil in the field. Advan. Soil Sci. 3:1–70.CrossRefGoogle Scholar
  189. Webster, S. 1984. Comparison of available nitrogen procedures for Douglas-fir (Pseudotsuga menziesii) soils. In: Nitrogen assessment workshop, May 19–20, 1982, RFNRP Report No. 2, College of Forest Resources, Univ. of Washington, Seattle, p. 41.Google Scholar
  190. Youngberg, C. 1978. Nitrogen mineralization and uptake from Douglas-fir forest floors. Soil Sci. Soc. Am. J. 42:499–502.CrossRefGoogle Scholar
  191. Zöttl, H. 1960. Dynamikder Stickstoffmineralisation im organishen Waldbodenmaterial. II. Einfluss des stickstoffgehaltes auf die Mineralstickstoff-nachlieferung. Plant and Soil 13:183–206.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1989

Authors and Affiliations

  • D. Binkley
    • 1
  • S. C. Hart
    • 2
  1. 1.Department of Forest and Wood SciencesColorado State UniversityFort CollinsUSA
  2. 2.Department of Plant and Soil BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations