Abelian Varieties

  • J. S. Milne


This chapter reviews the theory of abelian varieties emphasizing those points of particular interest to arithmetic geometers. In the main it follows Mum-ford’s book [16] except that most results are stated relative to an arbitrary base field, some additional results are proved, and étale cohomology is included. Many proofs have had to be omitted or only sketched. The reader is assumed to be familier with [10, Chaps. II, III] and (for a few sections that can be skipped) some étale cohomology. The last section of Chapter VII, “Jacobian Varieties”, contains bibliographic notes for both chapters.


Exact Sequence Isomorphism Class Abelian Variety Complete Variety Invertible Sheaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Artin, M. Algebraization of formal moduli I, in Global Analysis. Princeton University Press: Princeton, NJ, 1969, pp. 21–71.Google Scholar
  2. [2]
    Artin, M. Néron models, this volume, pp. 213–230.Google Scholar
  3. [3]
    Borel, A. Sur la cohomologie des espaces fibrés principaux et des espace homogènes de groupes de Lie compacts. Ann. Math., 64 (1953), 115–207.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Borel, A. Introduction aux Groupes Arithmétiques. Hermann: Paris, 1958.Google Scholar
  5. [5]
    Bourbaki, N. Algèbre Multilinéaire. Hermann: Paris, 1958.Google Scholar
  6. [6]
    Bourbaki, N. Algèbre Commutative. Hermann: Paris, 1961Google Scholar
  7. [6a]
    Bourbaki, N. Algèbre Commutative. Hermann: Paris, 1964zbMATHGoogle Scholar
  8. [6b]
    Bourbaki, N. Algèbre Commutative. Hermann: Paris, 1965.zbMATHGoogle Scholar
  9. [7]
    Grothendieck, A. Revêtements Étales et Groupe Fondamental (SGA1, 1960–61). Lecture Notes in Mathematics, 224. Springer-Verlag: Heidelberg, 1971.Google Scholar
  10. [8]
    Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique V. Les schémas de Picard: Théorèmes d’existence. Séminaire Bourbaki, Éxposé 232, 1961/62.Google Scholar
  11. [9]
    Grothendieck, A. (with Dieudonné, J.). Eléments de géométrie algébrique. Publ. Math. I.H.E.S., 4, 8, 11, 17, 20, 24, 28, 32 (1960–67).Google Scholar
  12. [10]
    Hartshorne, R. Algebraic Geometry. Springer-Verlag: Heidelberg, 1977.zbMATHGoogle Scholar
  13. [11]
    Humphreys, J. Linear Algebraic Groups. Springer-Verlag: Heidelberg, 1975.zbMATHGoogle Scholar
  14. [12]
    Lang, S. Abelian Varieties. Interscience: New York, 1959.Google Scholar
  15. [13]
    Milne, J. Étale Cohomology. Princeton University Press: Princeton, NJ, 1980.zbMATHGoogle Scholar
  16. [14]
    Mumford, D. Introduction to Algebraic Geometry. Lecture Notes, Harvard University: Cambridge, MA, 1967.Google Scholar
  17. [15]
    Mumford D. Geometric Invariant Theory. Springer-Verlag: Heidelberg, 1965.zbMATHGoogle Scholar
  18. [16]
    Mumford D. Abelian Varieties. Oxford University Press: Oxford, 1970.zbMATHGoogle Scholar
  19. [17]
    Oort, F. Commutative Group Schemes. Lecture Notes in Mathematics. Springer-Verlag: Heidelberg, 1966.zbMATHGoogle Scholar
  20. [18]
    Raynaud, M. Faisceaux Amples sur les Schémas en Groupes et les Espace Homogènes. Lecture Notes in Mathematics, 119. Springer-Verlag: Heidelberg, 1970.CrossRefGoogle Scholar
  21. [19]
    Rosen, M. (notes by F. McGuinness). Abelian varieties over C, this volume, pp. 79–101.Google Scholar
  22. [20]
    Serre, J.-P. Groupes Algèbriques et Corps de Classes. Hermann: Paris, 1959.zbMATHGoogle Scholar
  23. [21]
    Shafarevich, I. Basic Algebraic Geometry. Springer-Verlag: Heidelberg, 1974.zbMATHGoogle Scholar
  24. [22]
    Shatz, S. Group schemes, formal groups, and p-divisible groups, this volume, pp. 29–78.Google Scholar
  25. [23]
    Silverman, J. The theory of height functions, this volume, pp. 151–166.Google Scholar
  26. [24]
    Waterhouse, W. Introduction to Affine Group Schemes. Springer-Verlag: Heidelberg, 1979.zbMATHGoogle Scholar
  27. [25]
    Weil, A. Algebras with involution and classical groups. J. Indian Math. Soc, 24 (1960), 589–623.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • J. S. Milne

There are no affiliations available

Personalised recommendations