Advertisement

Cohort Analysis in Epidemiology

  • N. E. Breslow
Conference paper

Abstract

Epidemiologic cohort studies typically involve the follow-up of large population groups over many years to ascertain the effects of environmental exposures on the outbreak of illness and the age and cause of death. An efficient method of analysis is to fit Poisson regression models to grouped data consisting of a multidimensional classification of disease cases and person-years of observation by discrete categories of age, calendar period, and various aspects of exposure. Extension of these models for use with disease rates and exposure variables that vary continuously with age or time leads to the well-known proportional hazards model. Incorporation of external standard rates is more likely to improve the estimates of exposure effects in additive or excess risk models than in multiplicative or relative risk situations. Examples are provided of the maximum likelihood fitting of such models to data from cohort studies of British doctors and Montana smelter workers. The discussion considers the choice between models and certain problems that may arise when attempting to fit nonmultiplicative relationships.

Key words and phrases

efficiency excess risk healthy worker effect Poisson regression proportional hazards relative risk standardized mortality ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Aalen, O. (1978). “Nonparametric inference for a family of counting processes.” Ann. Statist., 6, 701–726.MathSciNetzbMATHCrossRefGoogle Scholar
  2. Andersen, P. K. and Gill, R. D. (1982). “Cox’s regression model for counting processes: A large sample study.” Ann. Statist., 10, 1100–1120.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Aranda-Ordaz, F. J. (1983). “An extension of the proportional hazards model for grouped data.” Biometrics, 39, 109–117.MathSciNetzbMATHCrossRefGoogle Scholar
  4. Armitage, P. (1955). “Tests for linear trend in proportions and frequencies.” Biometrics, 11, 375–386.CrossRefGoogle Scholar
  5. Armitage, P. (1971). Statistical Methods in Medical Research. Oxford: Blackwell.Google Scholar
  6. Armitage, P. and Doll, R. (1961). “Stochastic models for carcinogenesis.” In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 4, 19–38.Google Scholar
  7. Baker, R. J. and Nelder, J. A. (1978). The GLIM System: Release 3. Oxford: Numerical Algorithms Group.Google Scholar
  8. Beaumont, J. J. and Breslow, N. E. (1981). “Power considerations in epidemiologic studies of vinyl chloride workers.” Amer. J. Epidemiology, 114, 725–734.Google Scholar
  9. Beebe, G. W. (1981). “The atomic bomb survivors and the problem of low dose radiation effects.” Amer. J. Epidemiology, 114, 761–783.Google Scholar
  10. Berry, G. (1980). “Dose-response in case-control studies.” Epidemiology and Community Health, 34, 217–222.CrossRefGoogle Scholar
  11. Berry, G. (1983). “The analysis of mortality by the subject-years method.” Biometrics, 39, 173–184.CrossRefGoogle Scholar
  12. Berry, G., Gilson, J. C., Holmes, S., Lewinsohn, H. C., and Roach, S. A. (1979). “Asbestosis: A study of dose-response relationship in an asbestos textile factory.” British J. Industrial Medicine, 36, 98–112.Google Scholar
  13. Breslow, N. E. (1972). “Contribution to discussion of paper by D. R. Cox.” J. Roy. Statist. Soc. Ser. B, 34, 216–217.MathSciNetGoogle Scholar
  14. Breslow, N. (1981). “Odds ratio estimators when the data are sparse.” Biometrika, 68, 73–84.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Breslow, N. (1982). “Design and analysis of case-control studies.” Annual Rev. Public Health, 3, 29–54.CrossRefGoogle Scholar
  16. Breslow, N. (1984). “Elementary methods of cohort analysis.” Internat. J. Epidemiology, 13, 112–115.CrossRefGoogle Scholar
  17. Breslow, N. E. and Day, N. E. (1980). Statistical Methods in Cancer Research I: The Analysis of Case-Control Studies. Lyon: International Agency for Research on Cancer.Google Scholar
  18. Breslow, N. E., Lubin, J. H., Marek, P., and Langholz, B. (1983). “Multiplicative models and cohort analysis.” J. Amer. Statist. Assoc., 78, 1–12.zbMATHCrossRefGoogle Scholar
  19. Brown, C. C. and Chu, K. C. (1983). “Implications of the multistage theory of carcinogenesis applied to occupational arsenic exposure.” J. Natl. Cancer Inst., 70, 455–463.Google Scholar
  20. Clayton, D. G. (1982). “The analysis of prospective studies of disease aetiology.” Comm. Statist. A—Theory Methods, 11, No. 19, 2129–2155.MathSciNetCrossRefGoogle Scholar
  21. Cochran, W. G. (1954). “Some methods for strengthening the common χ2 tests.” Biometrics, 10, 417–451.MathSciNetzbMATHCrossRefGoogle Scholar
  22. Cox, D. R. (1972). “Regression models and life tables (with discussion).” J. Roy. Statist. Soc. Ser. B, 34, 187–220.MathSciNetzbMATHGoogle Scholar
  23. Cox, D. R. (1975). “Partial likelihood.” Biometrika, 62, 269–276.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. London: Chapman and Hall.zbMATHGoogle Scholar
  25. Doll, R. and Hill, A. B. (1964). “Mortality in relation to smoking: Ten years’ observations on British doctors.” British Medical J., 1, 1399–1410, 1460–1467.CrossRefGoogle Scholar
  26. Doll, R. and Hill, A. B. (1966). “Mortality of British doctors in relation to smoking: Observations on coronary thrombosis.” Natl. Cancer Inst. Monogr., 19, 205–268.Google Scholar
  27. Doll, R. and Peto, R. (1976). “Mortality in relation to smoking: 20 years’ observations on male British doctors.” British Medical J., 2, 1525–1536.CrossRefGoogle Scholar
  28. Doll, R. and Peto, R. (1978). “Cigarette smoking and bronchial carcinoma: Dose and time relationships among regular smokers and lifelong non-smokers.” J. Epidemiology and Community Health, 32, 303–313.CrossRefGoogle Scholar
  29. Fienberg, S. E. (1980). The Analysis of Cross-Classified Data, 2nd edn. Cambridge, MA: MIT Press.zbMATHGoogle Scholar
  30. Fienberg, S. E. and Mason, W. M. (1985). “Specification and implementation of age, period and cohort models.” In W. M. Mason and S. E. Fienberg (eds.), Cohort Analysis in Social Research: Beyond the Identification Problem. New York: Springer-Verlag, 45–88.Google Scholar
  31. Fox, A. J. and Collier, P. F. (1976). “Low mortality rates in industrial cohort studies due to selection for work and survival in the industry.” British. J. Preventive and Social Medicine, 30, 225–230.Google Scholar
  32. Frome, E. L. (1983). “The analysis of rates using Poisson regression models.” Biometrics, 39, 665–674.zbMATHCrossRefGoogle Scholar
  33. Frost, W. H. (1939). “The age selection of mortality from tuberculosis in successive decades.” Amer. J. Hygiene A, 30, 91–96.Google Scholar
  34. Gilbert, E. S. (1983). “An evaluation of several methods for assessing the effects of occupational exposure to radiation.” Biometrics, 39, 161–171.CrossRefGoogle Scholar
  35. Gill, R. (1980). Censoring and Stochastic Integrals. Amsterdam: Mathematical Centre Tracts.zbMATHGoogle Scholar
  36. Hammond, E. C. (1966). “Smoking in relation to the death rates of one million men and women.” Natl. Cancer Inst. Monogr., 19, 127–204.Google Scholar
  37. Hauck, W. W. (1979). “The large sample variance of the Mantel-Haenszel estimator of a common odds ratio.” Biometrics, 35, 817–820.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Holford, T. R. (1980). “The analysis of rates and of survivorship using log-linear models.” Biometrics, 36, 299–306.zbMATHCrossRefGoogle Scholar
  39. Johansen, S. (1981). “Discussion of paper by D. Oakes.” Internat. Statist. Rev., 49, 258–262.Google Scholar
  40. Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. New York: Wiley.zbMATHGoogle Scholar
  41. Kleinbaum, D. G., Kupper, L. L., and Morgenstern, H. (1982). Epidemiologic Research. Belmont: Wadsworth.Google Scholar
  42. Knox, E. G. (1973). “Computer simulation of industrial hazards.” British J. Industrial Medicine, 30, 54–63.Google Scholar
  43. Laird, N. and Olivier, D. (1981). “Covariance analysis of censored survival data using log-linear analysis techniques.” J. Amer. Statist. Assoc., 76, 231–240.MathSciNetzbMATHCrossRefGoogle Scholar
  44. Lee, A. M. and Fraumeni, J. F. (1969). “Arsenic and respiratory cancer in man: An occupational study.” J. Natl. Cancer Inst., 42, 1045–1052.Google Scholar
  45. Lee-Feldstein, A. (1983). “Arsenic and respiratory cancer in humans: Follow-up of copper smelter employees in Montana.” J. Natl. Cancer Inst., 70, 601–610.Google Scholar
  46. Lehman, E. L. (1959). Testing Statistical Hypotheses. New York: Wiley.Google Scholar
  47. Lundin, F. E., Archer, V. E., and Wagoner, J. K. (1979). “An exposure-time-response model for lung cancer mortality in uranium miners: Effects of radiation exposure, age, and cigarette smoking.” In N. E. Breslow and A. Whittemore (eds.), Energy and Health. Philadelphia: SIAM, 243–264.Google Scholar
  48. Maahon, B. and Pugh, T. F. (1970). Epidemiology: Principles and Methods. Boston: Little, Brown.Google Scholar
  49. Mantel, N. and Haenszel, W. (1959). “Statistical aspects of the analysis of data from retrospective studies of disease.” J. Natl. Cancer Inst., 22, 719–748.Google Scholar
  50. Moolgavkar, S. H., Lustbader, E. D., and Venzon, D. J. (1984). “A geometric approach to nonlinear regression diagnostics with application to matched case-control studies.” Ann. Statist., 12, 816–826.MathSciNetzbMATHCrossRefGoogle Scholar
  51. Nelder, J. A. and Wedderburn, R. W. M. (1972). “Generalized linear models.” J. Roy. Statist. Soc. A, 135, 370–384.CrossRefGoogle Scholar
  52. Oakes, D. (1977). “The asymptotic information in censored survival data.” Biometrika, 64, 441–448.MathSciNetzbMATHCrossRefGoogle Scholar
  53. Oakes, D. (1981). “Survival times: Aspects of partial likelihood.” Internat. Statist. Rev., 49, 235–264.MathSciNetzbMATHCrossRefGoogle Scholar
  54. Pregibon, D. (1981). “Logistic regression diagnostics.” Ann. Statist., 9, 705–724.MathSciNetzbMATHCrossRefGoogle Scholar
  55. Prentice, R. L. and Self, S. (1983). “Asymptotic distribution theory for Cox-type regression models with general relative risk form.” Ann. Statist., 11, 804–813.MathSciNetzbMATHCrossRefGoogle Scholar
  56. Rao, C. R. (1965). Linear Statistical Inference and its Applications. New York: Wiley.zbMATHGoogle Scholar
  57. Richards, F. S. G. (1961). “A method of maximum likelihood estimation.” Roy. Statist. Soc. Ser. B, 23, 469–473.MathSciNetzbMATHGoogle Scholar
  58. Rothman, K. J. (1974). “Synergy and antagonism in cause-effect relationships.” Amer. J. Epidemiology, 99, 385–388.Google Scholar
  59. Rothman, K. J. and Boice, J. D. (1979). Epidemiologic Analysis with a Programmable Calculator. NIH Publication 79–1649. Washington: U.S. Government Printing Office.Google Scholar
  60. Roueché, B. (1967). Annals of Epidemiology. Boston: Little, Brown.Google Scholar
  61. Schlesselman, J. J. (1982). Case-Control Studies: Design, Conduct and Analysis. New York: Oxford U.P.Google Scholar
  62. Selikoff, I. J., Hammond, E. C., and Seidman, H. (1980). “Latency of asbestos disease among insulation workers.” Cancer, 46, 2736–2740.CrossRefGoogle Scholar
  63. Storer, B. E., Wacholder, S., and Breslow, N. E. (1983). “Maximum likelihood fitting of general risk models to stratified data.” Appl. Statist., 32, 177–181.CrossRefGoogle Scholar
  64. Tarone, R. E. (1982). “The use of historical control information in testing for a trend in Poisson means.” Biometrics, 38, 457–462.CrossRefGoogle Scholar
  65. Thomas, D. C. (1977). “Addendum to a paper by Liddel, F. D. K., McDonald, J. C. and Thomas, D. C.” J. Roy. Statist. Soc. Ser. A, 483–485.Google Scholar
  66. Thomas, D. C. (1981). “General relative risk models for survival time and matched case-control analysis.” Biometrics, 37, 673–686.CrossRefGoogle Scholar
  67. Thomas, D. C. (1982). “Temporal effects and interactions in cancer: Implications of carcinogenic models.” In R. L. Prentice and A. S. Whittemore (eds.), Environmental Health: Risk Assessment, Philadelphia: SIAM, 107–121.Google Scholar
  68. Thompson, R. and Baker, R. (1981). “Composite link functions in generalized linear models.” Appl. Statist., 30, 125–131.MathSciNetzbMATHCrossRefGoogle Scholar
  69. Wall, W. D. and Williams, H. L. (1970). Longitudinal Studies and the Social Sciences. London: Heinemann.Google Scholar
  70. White, E. (1982). “A two stage design for the study of the relationship between a rare exposure and a rare disease.” Amer. J. Epidemiology, 115, 119–128.Google Scholar
  71. Whitehead, J. (1980). “Fitting Cox’s regression model to survival data using GLIM.” Appl. Statist., 29, 268–275.MathSciNetzbMATHCrossRefGoogle Scholar
  72. Whittemore, A. and Altshuler, B. (1976). “Lung cancer incidence in cigarette smokers: Further analysis of Doll and Hill’s data on British physicians.” Biometrics, 32, 805–816.CrossRefGoogle Scholar
  73. Yule, G. U. (1934). “On some points relating to vital statistics, more especially statistics of occupational mortality.” J. Roy. Statist. Soc., 94, 1–84CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1985

Authors and Affiliations

  • N. E. Breslow

There are no affiliations available

Personalised recommendations