Automatic Mesh Partitioning

  • Gary L. Miller
  • Shang-Hua Teng
  • William Thurston
  • Stephen A. Vavasis
Conference paper

DOI: 10.1007/978-1-4613-8369-7_3

Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 56)
Cite this paper as:
Miller G.L., Teng SH., Thurston W., Vavasis S.A. (1993) Automatic Mesh Partitioning. In: George A., Gilbert J.R., Liu J.W.H. (eds) Graph Theory and Sparse Matrix Computation. The IMA Volumes in Mathematics and its Applications, vol 56. Springer, New York, NY


This paper describes an efficient approach to partitioning unstructured meshes that occur naturally in the finite element and finite difference methods. This approach makes use of the underlying geometric structure of a given mesh and finds a provably good partition in random O(n) time. It applies to meshes in both two and three dimensions. The new method has applications in efficient sequential and parallel algorithms for large-scale problems in scientific computing. This is an overview paper written with emphasis on the algorithmic aspects of the approach. Many detailed proofs can be found in companion papers.


Center points domain decomposition finite element and finite difference meshes geometric sampling mesh partitioning nested dissection radon points overlap graphs separators stereographic projections 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Gary L. Miller
    • 1
  • Shang-Hua Teng
    • 2
  • William Thurston
    • 4
  • Stephen A. Vavasis
    • 5
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  2. 2.Palo Alto Research CenterXerox CorporationPalo AltoUSA
  3. 3.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  5. 5.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations