# Automatic Mesh Partitioning

Conference paper

## Abstract

This paper describes an efficient approach to partitioning unstructured meshes that occur naturally in the finite element and finite difference methods. This approach makes use of the underlying geometric structure of a given mesh and finds a provably good partition in random *O*(*n*) time. It applies to meshes in both two and three dimensions. The new method has applications in efficient sequential and parallel algorithms for large-scale problems in scientific computing. This is an overview paper written with emphasis on the algorithmic aspects of the approach. Many detailed proofs can be found in companion papers.

### Keywords

Center points domain decomposition finite element and finite difference meshes geometric sampling mesh partitioning nested dissection radon points overlap graphs separators stereographic projections## Preview

Unable to display preview. Download preview PDF.

### References

- [1]A. Agrawal and P. Klein. Cutting down on fill using nested dissection: Provably good elimination orderings. In
*Sparse Matrix Computations: Graph Theory Issues and Algorithms*,*IMA Volumes in Mathematics and its Applications*, (this book), A. George, J. Gilbert and J. Liu, Springer-Verlag, New York. 1992.Google Scholar - [2]N. Alon, P. Seymour, and R. Thomas. A separator theorem for non-planar graphs. In
*Proceedings of the 22th Annual ACM Symposium on Theory of Computing*,Maryland, May 1990. ACM.Google Scholar - [3]E. M. Andreev. On convex polyhedra in Lohacevskii space.
*Math. USR Sbornik*, 10 (3): 413–440, 1970.MATHCrossRefGoogle Scholar - [4]E. M. Andreev. On convex polyhedra of finite volume in Lobacevskii space.
*Math. USR Sbornik*, 12 (2): 270–259, 1970.Google Scholar - [5]M. J. Berger and S. Bokhari. A partitioning strategy for nonuniform problems on multiprocessors.
*IEEE Trans. Comp.*, C-36: 570–580, 1987.Google Scholar - [6]M. Bern, D. Eppstein and J. R. Gilbert. Provably good mesh generation. In
*31st Annual Symposium on Foundations of Computer Science*,*IEEE*,231–241, 1990, (to appear JCSS).Google Scholar - [7]M. Bern and D. Eppstein. Mesh generation and optimal triangulation. In
*Computing in Euclidean Geometry*, F. K. Hwang and D.-Z. Du editors, World Scientific, 1992.Google Scholar - [8]G. Birkhoff and A. George. Elimination by nested dissection.
*Complexity of Sequential and Parallel Numerical Algorithms*, J. F. Traub, Academic Press, 1973.Google Scholar - [9]P. E. Bjßrstad and O. B. Widlund. Iterative methods for the solution of elliptic problems on regions partitioned into substructures.
*SIAM J. Numer. Anal.*, 23: 1097–1120, 1986.CrossRefMathSciNetGoogle Scholar - [10]G. E. Blelloch.
*Vector Models for Data-Parallel Computing*. MIT-Press, Cambridge MA, 1990.Google Scholar - [11]J. H. Bramble, J. E. Pasciak, and A. H. Schatz. An iterative method for elliptic problems on regions partitioned into substructures,
*Math. Comp.*46: 361–9, 1986.MATHCrossRefMathSciNetGoogle Scholar - [12]D. Calahan. Parallel solution of sparse simultaneous linear equations. in
*Proceedings of the 11th Annual Allerton Conference on Circuits and Systems Theory*, 729–735, 1973.Google Scholar - [13]T. F. Chan and D. C. Resasco. A framework for the analysis and construction of domain decomposition preconditioners. UCLA-CAM-87-09, 1987.Google Scholar
- [14]L. P. Chew. Guaranteed quality triangular meshes, Department of Computer Science, Cornell University TR 89–893, 1989.Google Scholar
- [15]K. Clarkson. Fast algorithm for the all-nearest-neighbors problem. In
*the 24th Annual Symposium on Foundations of Computer Science*, 226–232, 1983.CrossRefGoogle Scholar - [16]R. Cole, M. Sharir and C. K. Yap. On k-hulls and related problems.
*SIAM J. Computing*, 61, 1987.Google Scholar - [17]J. H. Conway, and N. J. A. Sloane.
*Sphere Packings*,*Lattices and Groups*. Springer-Verlag, 1988.Google Scholar - [18]L. Danzer, J. Fonlupt and V. Klee. Helly’s theorem and its relatives.
*Proceedings of Symposia in Pure Mathematics*, American Mathematical Society, 7: 101–180, 1963.Google Scholar - [19]H. N. Djidjev. On the problem of partitioning planar graphs.
*SIAM J. Alg. Disc. Math.*, 3 (2): 229–240, June 1982.MATHCrossRefMathSciNetGoogle Scholar - [20]A. L. Dulmage and N. S. Mendelsohn. Coverings of bipartite graphs.
*Canadian J. Math.*10, pp 517–534, 1958.MATHCrossRefMathSciNetGoogle Scholar - [21]I. S. Duff. Parallel implementation of multifrontal schemes.
*Parallel Computing*, 3, 193–204, 1986.MATHCrossRefMathSciNetGoogle Scholar - [22]M. E. Dyer. On a multidimensional search procedure and its application to the Euclidean one-centre problem.
*SIAM Journal on Computing*13, pp 31–45, 1984.MATHCrossRefMathSciNetGoogle Scholar - [23]D. Eppstein, G. L. Miller, C. Sturtivant and S.-H. Teng. Approximating center points with and without linear programming. Manuscript, Massachusetts Institute of Technology, 1992.Google Scholar
- [24]D. Eppstein, G. L. Miller and S.-H. Teng. A deterministic linear time algorithm for geometric separators and its applications. Manuscript, Xerox Palo Alto Research Center, 1991.Google Scholar
- [25]I. Fkry. On straight line representing of planar graphs.
*Acta. Sci. Math.*24: 229–233, 1948.Google Scholar - [26]R. W. Floyd and R. L. Rivest. Expected time bounds for selection.
*CACM*18 (3): 165–173, March, 1975.MATHGoogle Scholar - [27]H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fâry embeddings of planar graphs. In
*Proceedings of the 20th Annual ACM Symposium on Theory of Computing*, 426–433, 1988.Google Scholar - [28]G. N. Fredrickson and R. Janardan. Separator-based strategies for efficient message routing. In
*27st Annual Symposium on Foundation of Computation Science*,*IEEE*, 428–237, 1986.Google Scholar - [29]I. Fried. Condition of finite element matrices generated from nonuniform meshes.
*AIAA J*. 10, pp 219–221, 1972.MATHCrossRefGoogle Scholar - [30]A. M. Frieze, G. L. Miller and S.-H. Teng. Separator based divide and conquer in computational geometry.
*Proceedings of the 1992 ACM Symposium on Parallel Algorithms and Architectures*, 1992.Google Scholar - [31]H. Gazit. An improved algorithm for separating a planar graph. Manuscript, Department of Computer Science, University of Southern California, 1986.Google Scholar
- [32]H. Gazit and G. L. Miller. A parallel algorithm for finding a separator in planar graphs. In
*28st Annual Symposium on Foundation of Computation Science*,*IEEE*, 238–248, Los Angeles, October 1987.Google Scholar - [33]H. Gazit. A deterministic parallel algorithm for planar graph isomorphism. In
*32nd Annual Symposium on Foundations of Computer Science, IEEE*, to appear, 1991.Google Scholar - [34]J. A. George. Nested dissection of a regular finite element mesh.
*SIAM J. Numerical Analysis*, 10: 345–363, 1973.MATHCrossRefGoogle Scholar - [35]A. George, M. T. Heath, J. Liu, E. Ng. Sparse Cholesky factorization on a local-memory multiprocessor.
*SIAM J. on Scientific and Statistical Computing*, 9, 327–340, 1988.MATHCrossRefMathSciNetGoogle Scholar - [36]J. A. George and J. W. H. Liu. An automatic nested dissection algorithm for irregular finite element problems.
*SIAM J. on Numerical Analysis*, 15, 1053–1069, 1978.MATHCrossRefMathSciNetGoogle Scholar - [37]J. A. George and J. W. H. Liu.
*Computer Solution of Large Sparse Positive Definite Systems*. Prentice-Hall, 1981.Google Scholar - [38]J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan. A separator theorem for graphs of bounded genus.
*J. Algorithms*, 5 pp 391–407, 1984.MATHCrossRefMathSciNetGoogle Scholar - [39]J.R. Gilbert, G.L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implementation and experiments. Technical Report, Xerox Palo Alto Research Center, to appear, 1992.Google Scholar
- [40]J. R. Gilbert and R. E. Tarjan. The analysis of a nested dissection algorithm.
*Numerische Mathematik*, 50 (4): 377–404, 1987.MATHCrossRefMathSciNetGoogle Scholar - [41]G. Hardy, J. E. Littlewood and G. Pólya.
*Inequalities*. Second edition, Cambridge University Press, 1952.MATHGoogle Scholar - [42]D. Haussier and E. Welzl. e-net and simplex range queries.
*Discrete e..4 Computational Geometry*, 2: 127–151, 1987.CrossRefGoogle Scholar - [43]J. P. Hutchinson and G. L. Miller. On deleting vertices to make a graph of positive genus planar. In
*Discrete Algorithms and Complexity Theory - Proceedings of the Japan-US Joint*Seminar,*Kyoto*,Japan, pages 81–98, Boston, 1986. Academic Press.Google Scholar - [44]C. Jordan. Sur les assemblages de lignes.
*Journal Reine Angew. Math*, 70: 185–190, 1869.CrossRefGoogle Scholar - [45]F. T. Leighton.
*Complexity Issues in VLSI*. Foundations of Computing. MIT Press, Cambridge, MA, 1983.Google Scholar - [46]F. T. Leighton and S. Rao. An approximate max-flow min-cut theorem for uniform multi-commodity flow problems with applications to approximation algorithms. In
*29th Annual Symposium on Foundations of Computer Science*, pp 422–431, 1988.Google Scholar - [47]C. E. Leiserson.
*Area Efficient VLSI Computation*. Foundations of Computing. MIT Press, Cambridge, MA, 1983.Google Scholar - [48]C. E. Leiserson and J. G. Lewis. Orderings for parallel sparse symmetric factorization. in
*3rd SIAM Conference on Parallel Processing for Scientific Computing*, 1987.Google Scholar - [49]R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested dissection.
*SIAM J. on Numerical Analysis*, 16: 346–358, 1979.MATHCrossRefMathSciNetGoogle Scholar - [50]R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs.
*SIAM J. of Appl. Math.*, 36: 177–189, April 1979.MATHCrossRefMathSciNetGoogle Scholar - [51]R. J. Lipton and R. E. Tarjan. Applications of planar separator theorem.
*SIAM J. Comput*, 9 (3): 615–627, August 1981.CrossRefMathSciNetGoogle Scholar - [52]J. W. II. Liu. The solution of mesh equations on a parallel computer. in 2nd Langley Conference on Scientific Computing, 1974.Google Scholar
- [53]N. Megiddo. Linear programming in linear time when the dimension is fixed.
*SIAM Journal on Computing*12, pp 759–776, 1983.MATHCrossRefMathSciNetGoogle Scholar - [54]G. L. Miller. Finding small simple cycle separators for 2-connected planar graphs.
*Journal of Computer and System Sciences*, 32 (3): 265–279, June 1986.MATHCrossRefMathSciNetGoogle Scholar - [55]G. L. Miller and S.-H. Teng. Centerpoints and point divisions. Manuscript, School of Computer Science, Carnegie Mellon University, 1990.Google Scholar
- [56]G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified geometric approach to graph separators. In
*32nd Annual Symposium on Foundations of Computer Science*,*IEEE*, pp 538–547, 1991.Google Scholar - [57]G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis. Separators for sphere-packings and nearest neighborhood graphs. in progress 1992.Google Scholar
- [58]G. L. Miller, S.-H. Teng, W. Thurston and S. A. Vavasis. Finite element meshes and geometric separators. in progress 1992.Google Scholar
- [59]G. L Miller and W. Thurston. Separators in two and three dimensions. In
*Proceedings of the 22M Annual ACM Symposium on Theory of Computing*,pages 300–309, Maryland, May 1990. ACM.Google Scholar - [60]G. L. Miller and S. A. Vavasis. Density graphs and separators. In
*Second Annual ACM-SIAM Symposium on Discrete Algorithms*,pages 331–336, San Francisco, January 1991. ACM-SIAM.Google Scholar - [61]S. A. Mitchell and S. A. Vavasis. Quality mesh generation in three dimensions. Proc. ACM Symposium on Computational Geometry, pp 212–221, 1992.Google Scholar
- [62]M. S. Paterson. Tape bounds for time-bounded Turing machines.
*J. Comp. Syst. Sci.*, 6: 116124, 1972.Google Scholar - [63]V. Pan and J. Reif. Efficient parallel solution of linear systems. In
*Proceedings of the 17th Annual ACM Symposium on Theory of Computing*,pages 143–152, Providence, RI, May 1985. ACM.Google Scholar - [64]A. Pothen and C.-J. Fan. Computing the block triangular form of a sparse matrix.
*ACM Transactions on Mathematical Software*16 (4), pp 303–324, 1990.MATHCrossRefMathSciNetGoogle Scholar - [65]A. Pothen, H. D. Simon, K.-P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
*SIAM J. Matrix Anal. Appl*. 11 (3), pp 430–452, July, 1990.MATHMathSciNetGoogle Scholar - [66]J. H. Reif and S. Sen. Polling: A new randomized sampling technique for computational geometry. In
*Proceedings of the 21st annual ACM Symposium on Theory of Computing*. 394–404, 1989.Google Scholar - [67]E. Schwabe, G. Bielloch, A. Feldmann, O. Ghattas, J. Gilbert, G. Miller, D. O’Hallaron, J. Schewchuk and S.-H. Teng. A separator-based framework for automated partitioning and mapping of parallel algorithms in scientific computing. In
*First Annual Dartmouth Summer Institute on Issues and Obstacles in the Practical Implementation of Parallel Algorithms and the use of Parallel Machines*, 1992.Google Scholar - [68]H. D. Simon. Partitioning of unstructured problems for parallel processing.
*Computing Systems in Engineering*2:(2/3), pp135–148.Google Scholar - [69]G. Strang and G. J. Fix.
*An Analysis of the Finite Element Method*, Prentice-Hall, 1973.Google Scholar - [70]S.-H. Teng.
*Points*,*Spheres*,*and Separators: A Unified Geometric Approach to Graph Partitioning*. PhD thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, 1991. CMU-CS-91–184.Google Scholar - [71]C. Thomassen. Planarity and duality of finite and infinite graphs.
*Journal of Combinatorial Theory*, Series B, 29: 244–271, 1980.MATHMathSciNetGoogle Scholar - [72]J. F. Thompson, Z. U. A. Warsi and C. W. Mastin.
*Numerical Grid Generation: Foundations and Applications*. New York, North Holland, 1985.MATHGoogle Scholar - [73]W. P. Thurston.
*The geometry and topology of 3-manifolds*. Princeton University Notes, 1988.Google Scholar - [74]W. T. Tutte. Convex representations of graphs.
*Proc. London Math. Soc.*10 (3): 304–320, 1960.MATHCrossRefMathSciNetGoogle Scholar - [75]W. T. Tutte. How to draw a graph.
*Proc. London Math. Soc.*13 (3): 743–768, 1963.MATHCrossRefMathSciNetGoogle Scholar - [76]J. D. Ullman.
*Computational Aspects of VLSI*. Computer Science Press, Rockville MD, 1984.MATHGoogle Scholar - [77]P. Ungar. A theorem on planar graphs.
*Journal London Math Soc*. 26: 256–262, 1951.MATHCrossRefMathSciNetGoogle Scholar - [78]P. M. Vaidya. Constructing provably good cheap preconditioners for certain symmetric positive definite matrices.
*IMA Workshop on Sparse Matrix Computation: Graph Theory Issues and Algorithms*, Minneapolis, Minnesota, October 1991.Google Scholar - [79]L. G. Valiant. Universality consideration in VLSI circuits.
*IEEE Transaction on Computers*, 30 (2): 135–140, February, 1981.MATHMathSciNetGoogle Scholar - [80]V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities.
*Theory Probab. Appl.*, 16: 264–280, 1971.MATHCrossRefGoogle Scholar - [81]S. A. Vavasis. Automatic domain partitioning in three dimensions.
*SIAM J. Sci. Stat. Comp.*, 12 (1991) 950–970.MATHCrossRefMathSciNetGoogle Scholar - [82]R. D. Williams. Performance of dynamic load balancing algorithms for unstructured mesh calculations. Technical Report, California Institute of Technology, 1990.Google Scholar
- [83]F.-F. Yao. A 3-space partition and its application. In
*Proceedings of the 15th Annual ACM Symposium on Theory of Computing, ACM*, 258–263, 1983.Google Scholar - [84]E. E. Zmijewski.
*Sparse Cholesky Factorization on a Multiprocessor*. PhD thesis, Department of Computer Science, Cornell University, 1987.Google Scholar

## Copyright information

© Springer-Verlag New York, Inc. 1993