The Riemann Problem for Systems of Conservation Laws of Mixed Type

  • Haitao Fan
  • Marshall Slemrod
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 52)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Abeyaratne and J. Knowles, Kinetic relations and the propagation of phase boundaries in solids, to appear in Archive for Rational Mechanics and Analysis.Google Scholar
  2. [2]
    Aifantis, E.C. and J. Serrin, The mechanical theory of fluid interfaces and Maxwell’s rule, J. Colloidal Interface Science 96 (1983), 517–529.CrossRefGoogle Scholar
  3. [3]
    Aifantis, E.G. and J. Serrin, Equilibrium solutions in the mechanical theory of fluid microstructures, J. Colloidal Interface Science 96 (1983), 530–547.CrossRefGoogle Scholar
  4. [4]
    Berdichevskii, V. and L. Truskinovskii, Energy structure of localization, In Studies in Applied Mechanics 12, Local effects in the analysis of structures, ed. P. Ladereze, Elsevier (1985) 127–158.Google Scholar
  5. [5]
    J. Carr, M. Gurtin, and M. Slemrod, Structured phase transitions on a finite interval, Archive for Rational Mechanics and Analysis 86 (1984) 317–351.MathSciNetADSMATHCrossRefGoogle Scholar
  6. [6]
    P. Casal, J. de mecanique, Paris 5 No. 2 (1966), 149.Google Scholar
  7. [7]
    P. Casal, and H. Gouin, Comptes Rendus Acad. Sci. Paris (306) II (1988), 99–104.MathSciNetMATHGoogle Scholar
  8. [8]
    P. Casal, and H. Gouin, Sur les interfaces liquid-vapor nonisothermes, J. de mecanique théorique et appliquée, Vol 7, No. 6 (1988), 1–43.Google Scholar
  9. [9]
    P. Casal and H. Gouin, A representation of liquid vapour interfaces by using fluids of grade n, Annales de Physique, Special issue No. 2 (1988).Google Scholar
  10. [10]
    P. Casal, and H. Gouin, Invariance properties of fluids of grade n, Lecture Notes in Math., Springer, Berlin (1988).Google Scholar
  11. [11]
    C.M. Dafermos, The mixed initial-boundary value problem for the equations of nonlinear one-dimensional visco-elasticity, D. Diff. 61 (1969), 71–86.MathSciNetADSGoogle Scholar
  12. [12]
    C.M. Dafermos, The entropy rate admissibility criterion for solutions of hyperbolic conservation laws, J. Diff. Eqs., 14, 202–212 (1973).MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    C.M. Dafermos, Solution of the Riemann problem for a class of hyperbolic conservation laws by the viscosity method, Arch. Rational Mech. Analysis 52 (1973), 1–9.MathSciNetADSMATHCrossRefGoogle Scholar
  14. [14]
    C.M. Dafermos, Structure of solutions of the Riemann problem for hyperbolic systems of conservation laws, Arch. Rational Mech. Analysis 53 (1974), 203–217.MathSciNetADSMATHCrossRefGoogle Scholar
  15. [15]
    C.M. Dafermos, Hyperbolic systems of conservation laws, in: “Systems of Non-linear Partial Differential Equations”, J.M. Ball, ed.; Boston: Reidel, 1983, pp. 25–70.Google Scholar
  16. [16]
    C.M. Dafermos, Admissible wave fans in nonlinear hyperbolic systems, Arch. Rational Mech. Analysis 106 (1989), 243–260.MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    C.M. Dafermos and R.J. DiPerna, The Riemann problem for certain classes of hyperbolic systems of conservation laws, J. Diff. Eqs. 20 (1976), 90–114.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    Ding Xiaxi, Chen Gui-Qiang and Luo Peizhu, Convergence of the fractional step Lax- Friedrichs scheme and Godunov scheme for the isentropic system of gas dynamics, Comm. Math. Phys. 121 (1989), 63–84.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    R.J. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys. 91 (1983), 1–30.MathSciNetADSMATHCrossRefGoogle Scholar
  20. [20]
    J. E. Dunn, and J. Serrin, On the thermodynamics of interstitial working, Archive for Rational Mechanics and Analysis 88 (1985), 95–133.MathSciNetADSMATHCrossRefGoogle Scholar
  21. [21]
    H.-T. Fan, The structure of solutions of the gas dynamics equations and the formation of the vacuum state to appear in Quarterly of Appl. Math.Google Scholar
  22. [22]
    H.-T. Fan, A limitingviscosityapproach to the Riemann problem for materials exhibiting changes of phase (II) to appear in Arch. Rational Mech. Anal.Google Scholar
  23. [23]
    H.-T. Fan, The uniqueness and stability of the solution of the Riemann problem for a system of conservation laws of mixed type, preprint (1990) Google Scholar
  24. [24]
    H.-T. Fan, The existence, uniqueness and stability of the solutions of the Riemann problem of a system of conservation laws of mixed type, Ph.D thesis, Univ. of Wisconsin-Madison, (1990) Google Scholar
  25. [25]
    H.-T. Fan, A vanishing viscosity approach on the dynamics of phase transitions in van der Waals fluids Forthcoming.Google Scholar
  26. [26]
    Felderhof, B.U, Dynamics of the diffuse gas-liquid interface near the critical point, Physica 48 (1970), 514–560.CrossRefGoogle Scholar
  27. [27]
    J. Glimm, The interactions of nonlinear hyperbolic waves, Comm. Pure Appl. Math. 41 (1988), 569–590.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    H. Gouin, Comptes rendus Acad. Sci Paris (305), II (1987), 833.MathSciNetADSMATHGoogle Scholar
  29. [29]
    H. Gouin. Comptes rendus Acad. Sci. Paris (306), II (1988), 755–759.Google Scholar
  30. [30]
    H. Gouin, J. de mécanique, Paris, 20, No. 2 (1981) 273.MathSciNetMATHGoogle Scholar
  31. [31]
    H. Gouin, Research Notes in Mathematics, 46 Pitman, London (1981), 128.Google Scholar
  32. [32]
    H. Gouin, Mech. Res. Comm. 3 (1976) 151.MATHCrossRefGoogle Scholar
  33. [33]
    M. Grinfeld, Topological techniques in dynamic phase transitions, Ph.D. thesis, Rensseler Polytechnic Institute, Troy, NY (1986).Google Scholar
  34. [34]
    M. Grinfeld, Isothermal dynamic phase transitions: existence of “cavitation waves”, Proc. Royal Society of Edinburgh Sect. A 107 A (1987) 153–163.Google Scholar
  35. [35]
    M. Grinfeld M., Non isothermal dynamic phase transitions, Quarterly of Applied Math. 47 (1989), 71–84.MathSciNetMATHGoogle Scholar
  36. [36]
    M. E. Gurtin, On a theory of phase transitions with inter facial energy, Archive for Rational Mechanics and Analysis 87 (1984), 187–212.MathSciNetADSGoogle Scholar
  37. [37]
    M. E. Gurtin, On phase transitions with bulk, inter facial and boundary energy, Archive for Rational Mechanics and Analysis 96 (1986), 243–264.MathSciNetADSGoogle Scholar
  38. [38]
    M. E. Gurtin, Some results and conjectures in the gradient theory of phase transitions, In Metastability and Incompletely Posed Problems, S. antman, J.E. Ericksen, D. Kinderlehrer, I. Muller, eds., Springer (1987), 135–146.Google Scholar
  39. [39]
    R. Hagan and J. Serrin, Dynamic changes of phase in a van der Waals fluid, In New Perspective in Thermodynamics, ed. J. Serrin, Springer-Verlag (1985).Google Scholar
  40. [40]
    R. Hagan and M. Slemrod, The viscosity-capillarity admissibility criterion for shocks and phase transitions, Arch. Rational Mech. Anal. 83 (1984), 333–361.MathSciNetADSCrossRefGoogle Scholar
  41. [41]
    H. Hattori, The Riemann problem for a van der Waals fluid with entropy rate admissibility criterion, Isothermal case, Arch. Rational Mech. Anal. 92 (1986), 247–263.MathSciNetADSMATHCrossRefGoogle Scholar
  42. [42]
    H. Hattori, The Rieman problem for a van der Waals fluid with entropy rate admissibility criterion, Nonisothermal case. J. Diff. Eqs. 65 (1986), 158–174.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    H. Hattori, The entropy rate admissibility criterion and the double phase boundary problem, Contemporary Math. 60 (1987), 51–65.MathSciNetGoogle Scholar
  44. [44]
    L. Hsiao, Admissibility criterion and admissible weak solutions of Riemann problem for conservation laws of mixed type, workshop proceedings on Nonlinear Evolution Equations that Change Type, IMA Volumes in Mathematics and its Applications, Springer-Verlag, New York, # 27, 1990, pp. 85–88.Google Scholar
  45. [45]
    L.Hsiao, Uniqueness of admissible solutions of Riemann problem of system of conservation laws of mixed type J. Diff. Eqs. 86 (1990) 197–233.MATHCrossRefGoogle Scholar
  46. [46]
    R.D. James, The propagation of phase boundaries in elastic bans, Arch. Rational Mech. Anal. 73 (1980), 125–158.MathSciNetADSMATHCrossRefGoogle Scholar
  47. [47]
    A.S. Kalasnikov, Construction of generalized solutions of quasi-linear equations of first order without convexity conditions as limits of solutions of parabolic equations with a small parameter, Dokl. Akad. Nauk. SSSR 127 ( 1959, 27–30 (in Russian).MathSciNetMATHGoogle Scholar
  48. [49]
    B.L. Keyfitz and H.C. Kranzer, A system of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal. 72 (1980), 219–241.MathSciNetADSMATHCrossRefGoogle Scholar
  49. [49]
    Y.-G. Kim, Shock splitting with phase change in a liquid-vapor system, Ph.D. thesis. Renselaer Polytechnic Institute (1987).Google Scholar
  50. [50]
    D.J. Korteweg, Sur la forme que prennent les equations du mouvement des fluides si L’ontient compte des forces capillarires par des variations de densité, Archives Néerlandaises des Sciences Exactes et Naturells (1901).Google Scholar
  51. [51]
    P.D. Lax, Hyperbolic systems of conservation laws, Comm. Pure Appl. Math. 10, 537–566 (1957).MathSciNetMATHCrossRefGoogle Scholar
  52. [52]
    T.-P. Liu, The Riemann problem for general system of conservation laws, J. Diff. Eqs. 18, 218–234 (1975).MATHCrossRefGoogle Scholar
  53. [53]
    T.-P. Liu, Admissible solutions of hyperbolic system of conservation laws, Memoirs AM. Math. Soc. 240 (1981) 1–78.Google Scholar
  54. [54]
    M. Mawhin, Topological degree methods in nonlinear boundary value problems, Conferences Board of Mathematical Sciences Regional Conference Series in Mathematics No. 40, American Math. Society (1979).Google Scholar
  55. [55]
    K. Mischiakow, Dynamic phase transitions: a connection matrix approach, To appear Proc. March 1989, Conference on Equations that change type, IMA, Minneapolis, ed. M. Shearer, Springer (1989).Google Scholar
  56. [56]
    R. Pego, Phase transitions in one dimensional nonlinear viscoelasticity: admissibility and stability, Arch. Rational Mech. Anal. 97 (1987), 353–394.MathSciNetADSMATHCrossRefGoogle Scholar
  57. [57]
    T.J. Pence, On the mechanical dissipation of solutions to the Riemann problem for impact involving a two-phase elastic material Google Scholar
  58. [58]
    B. Riemann, Ueber die Fortpflanziung ebener Luft wellen von endlicher Sch wingungs-weite Gŏttpin Abh. Math. CT. 8 (1960) 43–65 Google Scholar
  59. [59]
    J. Serrin, Phase transitions and inter facial layers for van der Waals fluids, SAFA IV Conference, Recent Methods in Nonlinear Analysis and Applications, Naples, eds. A. Canfora, S. Rionero, C. Sbordone, C. Trombetti, Liguori, Naples (1980), 169–176.Google Scholar
  60. [60]
    J. Serrin, The form of interfacial surfaces in Korteweg’s theory of phase equilibria, Q. Applied Math. 41 (1983), 351–364.MathSciNetGoogle Scholar
  61. [61]
    M. Shearer, Riemann problem for a class of conservation laws of mixed type, J.Diff.Eqs. 46 (1982) 426–443.MathSciNetMATHCrossRefGoogle Scholar
  62. [62]
    M. Shearer, Admissibility criteria for shock wave solutions of a system of conservation laws of mixed type, Proceedings Royal Society of Edinburgh 93 (1983) 233–244.MathSciNetMATHGoogle Scholar
  63. [63]
    M.Shearer, Nonuniqueness of admissible solutions of Riemann initial value problem for a system of conservation laws of mixed type Arch.Rational Mech. Anal. 93 (1986) 45–59.MathSciNetADSMATHCrossRefGoogle Scholar
  64. [64]
    M.Shearer, Dynamic phase transitions in a van der Waals gas Quarterly of Applied Math., 46(1988) 631–636.MathSciNetMATHGoogle Scholar
  65. [65]
    C.-W. Shu, Numerical methods for systems of conservation laws of mixed type using flux splitting, preprint (1990).Google Scholar
  66. [66]
    M.Slemrod, Admissibility criterion for propagating phase boundaries in a van der Waals fluid Archive for Rational Mechanics and Analysis, 81, 301–315 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  67. [67]
    M. Slemrod, Dynamic phase transitions in a van der Waals fluid, J. Differential Equations 52 (1984), 1–23.MathSciNetMATHCrossRefGoogle Scholar
  68. [68]
    M. Slemrod, Dynamics of first order phase transitions Phase transitions and Material Instabilities in Solids, ed. (1984), 163–203.Google Scholar
  69. [69]
    M. Slemrod, A limitingviscosityapproach to the Riemann problem for materials exhibiting change of phase, Arch.Rational Mech.Anal. 105 (1989) 327–365.MathSciNetADSMATHCrossRefGoogle Scholar
  70. [70]
    M.Slemrod, Remarks on the travelling wave theory of the dynamics of phase transitions preprint, 1989.Google Scholar
  71. [71]
    M. Slemrod and A. Tzavaras, A limiting viscosity approach for the Riemann problem in isentropic gas dynamics, Indiana Univ. Math. J. 38 (1989), 1047–1073.MathSciNetMATHCrossRefGoogle Scholar
  72. [72]
    P.A. Thompson, G.C. Carofano, Y.-G. Kim, Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube, J. Fluid Mechanics 166 (1966) 57–92.ADSCrossRefGoogle Scholar
  73. [73]
    P.A. Thompson, H. Chaves, G.E.A. Meier, Y.-G. Kim and H.-D. Speckmann, Wave splitting in a fluid of large heat capacity, J. Fluid Mechanics 185 (1987) 385–414.ADSCrossRefGoogle Scholar
  74. [74]
    P.A. Thompson, Y.-G. Kim, direct observation of shock splitting in a vapor-liquid system, Physics of Fluids 26 (1983) 3211–3215.ADSCrossRefGoogle Scholar
  75. [75]
    P.A. Thompson, Y.-G. Kim and G.E.A. Meier, Proc. 14th Int. Symposium on Shock tubes and Waves, Shock tube studies with incident liquefaction shocks, R.D. Archer and B.E. Milton, eds., New South Wales Univ. Press, Sydney (1984) 413–420.Google Scholar
  76. [76]
    P.A. Thompson and D.A. Sullivan, On the possibility of complete condensation shock waves in retrograde fluids, J. Fluid Mechanics 70 (1975) 639–650.ADSCrossRefGoogle Scholar
  77. [77]
    L.M. Truskinovskii, Equilibrium phase interfaces, Dokl. Akad. Nauk SSSR, 265 (1982) 306–310.Google Scholar
  78. [78]
    L.M. truskinovskii, Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium PMM USSR 51 (1987) 777–784 (English transl. of Prikl. Matem. Mekhan. 51 (1987), 1009–1019.MathSciNetGoogle Scholar
  79. L.M. truskinovskii, Dynamics of non-equilibrium phase boundaries in a heat conducting non-linearly elastic medium PMM USSR 51 (1987) 777–784 (English transl. of Prikl. Matem. Mekhan. 51 (1987), 1009–1019.MathSciNetGoogle Scholar
  80. [79]
    L.M. Truskinovskii, Structure of an isothermal phase jump, Dokl. Akad. Nauk SSSR, 285 (1985) 2.MathSciNetGoogle Scholar
  81. [80]
    V.A.Tupciev, The asymptotic behavior of the solutions of Cauchy problem for the equation e 2 tuxx = u t + [ø(u)] x that degenerates for ε = 0 into the problem of the decay of an arbitrary discontinuity for the case of a rarefaction wave Z.Vycisl.Mat.Fiz. 12(1972) 770–775; English translation in USSR Commput. Math, and Phys. 12.MathSciNetMATHGoogle Scholar
  82. V.A.Tupciev, The asymptotic behavior of the solutions of Cauchy problem for the equation e 2 tuxx = u t + [ø(u)] x that degenerates for ε = 0 into the problem of the decay of an arbitrary discontinuity for the case of a rarefaction wave Z.Vycisl.Mat.Fiz. 12(1972) 770–775; English translation in USSR Commput. Math, and Phys. 12.Google Scholar
  83. V.A.Tupciev, On the method of introducing viscosity in the study of problems involving the decay of discontinuity Dokl.Akad.Nauk.SSSR, 211 (1973) 55–58.MathSciNetGoogle Scholar
  84. A.I. Volpert, The space BV and the quasilinear equations, Mat Sbornik 73 (115) (1967), 355–302. English translation, Math USSR Sbornik 2, (1967) 225–267.MathSciNetGoogle Scholar
  85. A.I. Volpert, The space BV and the quasilinear equations, Mat Sbornik 73 (115) (1967), 355–302. English translation, Math USSR Sbornik 2, (1967) 225–267.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1993

Authors and Affiliations

  • Haitao Fan
    • 1
  • Marshall Slemrod
    • 2
  1. 1.IMAUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations