Advertisement

The Fourier Transformation and Elements of Harmonic Analysis

  • A. A. Kirillov
  • A. A. Gvishiani
Chapter
Part of the Problem Books in Mathematics book series (PBM)

Abstract

Let G be a finite group, and K some field. Denote by K[G] the collection of formal linear combinations of elements of the group G with coefficients in K.

The elements of K[G] have the form
$$ \begin{array}{*{20}{c}} {x = \sum\limits_{g \in G} {a\left( g \right)g,} }&{where{\text{ }}a\left( g \right) \in K.} \end{array} $$
(1)

Keywords

Invariant Measure Continuous Operator Inverse Fourier Transformation Convolution Operator Dual Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1982

Authors and Affiliations

  • A. A. Kirillov
    • 1
  • A. A. Gvishiani
    • 2
  1. 1.Mathemathics DepartmentMoscow State UniversityMoscowUSSR
  2. 2.Applied Mathemathics LaboratoryInstitute of Earth Physics of the Academy of Sciences of the USSRMoscowUSSR

Personalised recommendations