Advertisement

Introduction

  • J. I. Goldstein
  • H. Yakowitz
  • D. E. Newbury

Abstract

In our rapidly expanding technology, the scientist today is more frequently required to observe and correctly explain phenomena occurring on a micrometer (μm) and submicrometer scale. The electron microprobe and scanning electron microscope are two powerful instruments which permit the characterization of heterogeneous materials and surfaces on such a local scale. In both instruments, the area to be examined is irradiated with a finely focused electron beam, which may be static, or swept in a raster across the surface of the specimen. The types of signals which are produced when the focused electron beam impinges on a specimen surface include secondary electrons, backscattered electrons, characteristic x-rays, Auger electrons, and photons of various energies. They are obtained from specific emission volumes within the sample and are used to measure many characteristics of the sample (composition, surface topography, crystallography, etc.).

Keywords

Electron Microprobe Scanning Transmission Electron Microscope Dental Alloy Focus Electron Beam Electron Optic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Broers, in Scanning Electron Microscopy/1974, IITRI, Chicago, Illinois (1974) p. 9.Google Scholar
  2. 2.
    V. K. Zworykin, J. Hillier, and R. L. Snyder, ASTM Bull. 117, 15 (1942).Google Scholar
  3. 3.
    M. von Ardenne, Z. Phys., 109, 553 (1938).CrossRefGoogle Scholar
  4. 4.
    M. von Ardenne, Z. Techn. Phys., 19, 407 (1938).Google Scholar
  5. 5.
    D. McMullan, Ph.D. Dissertation, Cambridge University (1952).Google Scholar
  6. 6.
    K. C. A. Smith, Ph.D. Dissertation, Cambridge University (1956).Google Scholar
  7. 7.
    T. E. Everhart and R. F. M. Thornley, J. Sci. Instr., 37, 246 (1960).CrossRefGoogle Scholar
  8. 8.
    C. W. Oatley and T. E. Everhart, J. Electron., 2, 568 (1957).Google Scholar
  9. 9.
    R. F. W. Pease, Ph.D. Dissertation, Cambridge University (1963).Google Scholar
  10. 10.
    R. F. W. Pease and W. C. Nixon, J. Sci. Instr., 42, 81 (1965).CrossRefGoogle Scholar
  11. 11.
    A. V. Crewe, in Scanning Electron Microscopy/1974, IITRI, Chicago, Illinois (1969), p. 11.Google Scholar
  12. 12.
    D. G. Coates, Phil. Mag., 16, 1179 (1967).CrossRefGoogle Scholar
  13. 13.
    G. R. Booker, in Modern Diffraction Techniques in Materials Science (S. Amelincx, ed.), North Holland, Amsterdam (1970), p. 647.Google Scholar
  14. 14.
    J. R. Banbury, Ph.D. Dissertation, Cambridge University (1970).Google Scholar
  15. 15.
    D. C. Joy, Ph.D. Dissertation, Oxford University (1969).Google Scholar
  16. 16.
    J. Philibert and R. Tixier, Micron, 1, 174 (1969).Google Scholar
  17. 17.
    D. J. Fathers, J. P. Jakubovics, D. C. Joy, D. E. Newbury, and H. Yakowitz, phys. stat. sol. a, 20, 535 (1973).CrossRefGoogle Scholar
  18. 18.
    D. J. Fathers, J. P. Jakubovics, D. C. Joy, D. E. Newbury, and H. Yakowitz, phys. stat. sol. a 22, 609 (1974).CrossRefGoogle Scholar
  19. 19.
    K. F. J. Heinrich, C. E. Fiori, and H. Yakowitz, Science, 167, 1129 (1970).CrossRefGoogle Scholar
  20. 20.
    C. E. Fiori, H. Yakowitz, and D. E. Newbury, in Scanning Electron Microscopy/1974, IITRI, Chicago, Illinois (1974), p. 167.Google Scholar
  21. 21.
    C. J. D. Catto, Ph.D. Dissertation, Cambridge University (1972).Google Scholar
  22. 22.
    N. C. Yew and D. E. Pease, in Scanning Electron Microscopy/197b, IITRI, Chicago, Illinois (1974), p. 191.Google Scholar
  23. 23.
    J. Lebiedzik, K. G. Burke, S. Troutman, G. G. Johnson, Jr., and E. W. White, in Scanning Electron Microscopy/1974, IITRI, Chicago, Illinois (1974), p. 121.Google Scholar
  24. 24.
    R. F. Herzog, B. L. Lewis, and T. E. Everhart, in Scanning Electron Microscopy/ 1974, IITRI, Chicago, Illinois (1974), p. 175.Google Scholar
  25. 25.
    A. Boyde, in Scanning Electron Microscopy/1974, IITRI, Chicago, Illinois (1974), p. 91.Google Scholar
  26. 26.
    A. R. Dinnes, in Scanning Electron Microscopy: Systems and Applications 1973. Conference Series 18, Institute of Physics, London (1973), p. 76.Google Scholar
  27. 27.
    R. Fitzgerald, K. Keil, and K. F. J. Heinrich, Science, 159, 528 (1968).CrossRefGoogle Scholar
  28. 28.
    J. I. Goldstein and H. J. Axon, Naturwiss., 60, 313 (1973).CrossRefGoogle Scholar
  29. 29.
    K. F. J. Heinrich, in Fifty Years of Progress in Metallographic Techniques, ASTM Special Tech. Publ. No. 430 (1968), p. 315.Google Scholar
  30. 30.
    H. Moseley, Phil. Mag., 26, 1024 (1913).Google Scholar
  31. 31.
    J. Hillier, U.S. Pat. 2,418,029 (1947); L. L. Marton, U.S. Pat. 2,233,286 (1941).Google Scholar
  32. 32.
    R. Castaing and A. Guinier, in Proceedings of the 1st International Conference on Electron Microscopy, Delft, 1949, (1950), p. 60.Google Scholar
  33. 33.
    R. Castaing, Thesis, University of Paris (1951), ONERA publ. No. 55.Google Scholar
  34. 34.
    R. Castaing, in Advances in Electronics and Electron Physics Vol. 13 (1960), p. 317.Google Scholar
  35. 35.
    I. B. Borovskii and N. P. Ilin, Dokl Akad. Nauk SSSR, 106, 655 (1953).Google Scholar
  36. 36.
    M. E. Haine and T. Mulvey, J..Sci. Instr., 26, 350 (1959).Google Scholar
  37. 37.
    L. S. Birks and E. J. Brooks, Rev. Sci. Instr., 28, 709 (1957).CrossRefGoogle Scholar
  38. 38.
    R. M. Fisher and J. C. Schwarts, J. Appl. Phys., 28, 1377 (1957).Google Scholar
  39. 39.
    D. B. Wittry, Thesis, California Institute of Technology (1957).Google Scholar
  40. 40.
    J. R. Cuthill, L. L. Wyman, and H. Yakowitz, J. Metals, 15, 763 (1963).Google Scholar
  41. 41.
    V. E. Cosslett and P. Duncumb, Nature, 177, 1172 (1956).CrossRefGoogle Scholar
  42. 42.
    D. B. Wittry, in ASTM Spec. Techn. Publ. 349, (1963), p. 128.Google Scholar
  43. 43.
    J. Philibert, in X-Ray Optics and X-Ray Microanalysis (H. H. Pattee, V. E. Cosslett, and A. Engström, eds.), Academic Press, New York (1963), p. 379.Google Scholar
  44. 44.
    P. Duncumb and P. K. Shields, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York (1966), p. 284.Google Scholar
  45. 45.
    B. L. Henke, in Advances in X-Ray Analysis, Vol. 7, Plenum Press, New York (1964), p. 460.Google Scholar
  46. 46.
    B. L. Henke, in Advances in X-Ray Analysis, Vol. 8, Plenum Press, New York (1965), p. 269.Google Scholar
  47. 47.
    J. V. P. Long and S. O. Agrell, Min. Mag., 34, 318 (1965).CrossRefGoogle Scholar
  48. 48.
    D. F. Kyser and D. B. Wittry, in The Electron Microprobe (T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry, eds.), Wiley, New York, (1966), p. 691.Google Scholar
  49. 49.
    D. R. Beaman and J. A. Isasi, Anal. Chem., 42, 1540 (1970).CrossRefGoogle Scholar
  50. 50.
    H. Yakowitz, R. L. Myklebust, and K. F. J. Heinrich, Nat. Bureau of Standards Tech. Note 796 (1973).Google Scholar
  51. 51.
    N. C. Barbi, A. D. Sandborg, J. C. Russ, and C. E. Soderquist, in Scanning Electron Microscopy/1974, IITRI, Chicago, Illinois (1974), p. 151.Google Scholar

Bibliography of Texts and Monographs in SEM and EPMA

  1. 1951 R. Castaing, “Application of Electron Probes to Local Chemical and Crystallographic Analysis,” Ph. D. Thesis, University of Paris.Google Scholar
  2. 1966 H. A. Elion, Instrument and Chemical Analysis Aspects of Electron Microanalysis and Macroanalysis, Pergamon, New York.Google Scholar
  3. 1968 K. F. J. Heinrich (ed.), Quantitative Electron Probe Microanalysis, NBS Spec. Publ. 298.Google Scholar
  4. 1968 P. R. Thornton, Scanning Electron Microscopy, Chapman and Hall, London.Google Scholar
  5. 1969 A. J. Tousimis and L. L. Marton (eds.), Electron Probe Microanalysis, Advances in Electronics and Electron Physics (Suppl. 6), Academic Press, New York.Google Scholar
  6. 1971 L. S. Birks, Electron Probe Microanalysis, 2nd ed., Wiley-Interscience, New York.Google Scholar
  7. 1971 V. H. Heywood (ed.), Scanning Electron Microscopy—Systematic and Evolutionary Applications, Academic Press, London.Google Scholar
  8. 1972 D. R. Beaman and J. A. Isasi, Electron Beam Microanalysis, ASTM Spec. Tech. Publ. 506, 80 pp.Google Scholar
  9. 1972 J. W. S. Hearle, J. T. Sparrow, and P. M. Cross, The Use of the Scanning Electron Microscope, Pergamon Press, Oxford.Google Scholar
  10. 1972 C. W. Oatley, The Scanning Electron Microscope, University Press, Cambridge.Google Scholar
  11. 1973 C. A. Andersen (ed.), Microprobe Analysis, Wiley, New York.Google Scholar
  12. 1973 R. Woldseth, X-Ray Energy Spectrometry, Kevex, Burlingame, California.Google Scholar
  13. 1974 D. B. Holt, M. D. Muir, P. R. Grant, and I. M. Boswarva (eds.), Quantitative Scanning Electron Microscopy, Academic Press, London.Google Scholar
  14. 1974 O. C. Wells, Scanning Electron Microscopy, McGraw-Hill, New York.Google Scholar
  15. 1975 S. J. B. Reed, Electron Microprobe Analysis, University Press, Cambridge. The proceedings of the annual SEM conference sponsored by the Illinois Institute for Technology Research Institute (IITRI) each year since 1968 constitute the best source for individual research papers on SEM. Compiled and edited each year by Dr. O. Johari, this set of proceedings is necessary to any SEM laboratory. Current and past proceedings can be obtained from Dr. Johari at IITRI.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • J. I. Goldstein
    • 1
  • H. Yakowitz
    • 2
  • D. E. Newbury
    • 2
  1. 1.Metallurgy and Materials Science DepartmentLehigh UniversityBethlehemUSA
  2. 2.Institute for Materials ResearchNational Bureau of StandardsUSA

Personalised recommendations