Advertisement

Multiple Actions of Amantadine Against Influenza Viruses

  • Alan J. Hay
  • Mary C. Zambon
Chapter
Part of the Developments in Molecular Virology book series (DMVI, volume 4)

Summary

The data presented in this paper distinguish two actions of amantadine on the replication of fowl plague virus in tissue culture which occur at different concentrations. Low concentrations (approximately 5 μM) appear to inhibit the assembly of fowl plague virus by interacting with the virus haemagglutinin. In contrast, concentrations of 0.5 mM or greater, which have no effect on virus assembly, inhibit an early stage in infection which may involve low pH-dependent fusion between the virus envelope and the membrane of secondary lysosomes (1, 2). Whereas most influenza viruses display the latter sensitivity to amantadine they differ greatly in their susceptibility to low concentrations of the drug. The replication of certain human influenza viruses, e.g. A/Singapore/1/57 (H2N2), is also affected by low drug concentrations at an early stage prior to primary transcription. This action which is dependent on properties of the matrix protein appears different from that of high concentrations of amantadine.

Keywords

Influenza Virus Avian Influenza Virus Yield Human Influenza Virus Primary Transcription 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Matlin, K.S., Reggio, H., Helenius, A. and Simons, K. J. Cell Biol. 91:605–615, 1981.CrossRefGoogle Scholar
  2. 2.
    Yoshimura, A., Kuroda, K., Kawasaki, K., Yamashina, S., Maeda, T. and Ohnishi, S. J. Virol. 43:284–293, 1982.PubMedGoogle Scholar
  3. 3.
    Oxford, J.S. and Galbraith, A. Pharmacol. Ther. 11:181–262, 1980.PubMedCrossRefGoogle Scholar
  4. 4.
    Kato, N. and Eggers, H.J. Virology 31:632–641, 1969.CrossRefGoogle Scholar
  5. 5.
    Dourmashkin, R.R. and Tyrrell, D.A.J. J. Gen. Virol. 24:129–141, 1974.PubMedCrossRefGoogle Scholar
  6. 6.
    Skehel, J.J., Hay, A.J. and Armstrong, J.A. J. Gen. Virol. 38:97–110, 1978.PubMedCrossRefGoogle Scholar
  7. 7.
    Koff, W.C. and Knight, V. J. Virol. 31:261–263, 1979.PubMedGoogle Scholar
  8. 8.
    Bukrinskaya, A.G., Vorkunova, N.K., Kornilayeva, G.V., Narmanbetova, R.A. and Vorkunova, G.K. J. Gen. Virol. 60:49–59, 1982.PubMedCrossRefGoogle Scholar
  9. 9.
    Cochran, K.W., Maasab, H.F., Tsunoda, A. and Berlin, B.S. Ann. N.Y. Acad. Sci. 130:432–439, 1965.PubMedCrossRefGoogle Scholar
  10. 10.
    Oxford, J.S., Logan, I.S. and Potter, C.W. Ann. N.Y. Acad. Sci. 173;300–313, 1970.CrossRefGoogle Scholar
  11. 11.
    Appleyard, G. J. Gen. Virol. 36:249–255, 1977.CrossRefGoogle Scholar
  12. 12.
    Lubeck, M.D., Schulman, J.L. and Palese, P. J. Virol. 28:710–716, 1978.PubMedGoogle Scholar
  13. 13.
    Tuckova, E., Vonka, V., Zavadova, A. and Kutinova, L. J. Biol. Stand. 1:341–346, 1973.CrossRefGoogle Scholar
  14. 14.
    Appleyard, G. and Maber, H.B. J. Antimicrobial Chemotherapy 1(Suppl.): 49–5 3, 1975.Google Scholar
  15. 15.
    Hay, A.J., Kennedy, N.C.T., Skehel, J.J. and Appleyard, G. J. Gen. Virol. 42:189–191, 1979.PubMedCrossRefGoogle Scholar
  16. 16.
    Scholtissek, C. and Faulkner, G. J. Gen. Virol. 44:807–815, 1979.PubMedCrossRefGoogle Scholar
  17. 17.
    Indulen, M.K. and Kalninya, V.A. In: Developments in Antiviral Therapy (Eds. L.H. Collier and J. Oxford ), Academic Press, 1980, pp. 107–118.Google Scholar
  18. 18.
    Hay, A.J. Virology 60:398–418, 1974.PubMedCrossRefGoogle Scholar
  19. 19.
    Hay, A.J., Lomniczi, B., Bellamy, A.R. and Skehel, J.J. Virology 83:337–345, 1977.PubMedCrossRefGoogle Scholar
  20. 20.
    Smith, G.L. and Hay, A.J. Virology 118:96–108, 1982.PubMedCrossRefGoogle Scholar
  21. 21.
    Helenius, A., Kartenbeck, J., Simons, K. and Fries, E. J. Cell Biol. 84:404–420, 1980.PubMedCrossRefGoogle Scholar
  22. 22.
    Helenius, A., Marsh, M. and White, J. J. Gen. Virol. 58:47–61, 1982.PubMedCrossRefGoogle Scholar
  23. 23.
    White, J., Matlin, K. and Helenius, A. J. Cell Biol. 89:674–679, 1981.PubMedCrossRefGoogle Scholar
  24. 24.
    Ohkuma, S. and Poole, B. Proc. Natl. Acad. Sci. USA 75:3327–3331, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Skehel, J.J., Bayley, P.M., Brown, E.B., Martin, S.R., Waterfield, M.D., White, J.M., Wilson, I.A. and Wiley, D.C. Proc. Natl. Acad. Sci. USA 79:968–972, 1982.PubMedCrossRefGoogle Scholar
  26. 26.
    White, J., Kartenbeck, J. and Helenius, A. EMBO Journal 1:217–222, 1982.PubMedGoogle Scholar
  27. 27.
    Huang, R.T.C., Rott, R. and Klenk, H.–D. Virology 110:243–247, 1981.PubMedCrossRefGoogle Scholar
  28. 28.
    Maeda, T., Kawasaki, K. and Ohnishi, S. Proc. Natl. Acad. Sci. USA 78:4133–4137, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Bukrinskaya, A.G., Vorkunova, N.K. and Pushkarskaya, N.L. J. Gen. Virol. 60:61–66, 1982.PubMedCrossRefGoogle Scholar
  30. 30.
    Jensen, E.M. and Liu, O.C. Proc. Soc. Exp. Biol. Med. 112:456–458, 1963.Google Scholar
  31. 31.
    Fletcher, R.D., Hirschfield, J.E. and Forbes, M. Nature 207:664–668, 1965.PubMedCrossRefGoogle Scholar
  32. 32.
    Jain, M.K., Yen-Hin Wu, N., Morgan,, T.K., Biggs, M.S. and Murray, R.K. Chem. Phys. Lipids 17:71–78, 1976.PubMedCrossRefGoogle Scholar
  33. 33.
    Couch, R.B. and Jackson, G.G. J. Inf. Dis. 134:516–527, 1976.CrossRefGoogle Scholar
  34. 34.
    Wood, T.R. Ann. N.Y. Acad. Sci. 130:419–431, 1965.PubMedCrossRefGoogle Scholar
  35. 35.
    Bleidner, W.E., Harmon, J.B., Hewes, W.E., Lynes, T.E. and Hermann, E.C. J. Pharmacol. Exp. Ther. 150:484–490, 1965.PubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishing, Boston 1984

Authors and Affiliations

  • Alan J. Hay
    • 1
  • Mary C. Zambon
    • 1
  1. 1.Division of VirologyNational Institute for Medical ResearchMill Hill,LondonUK

Personalised recommendations