Advances in Nonlinear Programming pp 31-56

Part of the Applied Optimization book series (APOP, volume 14)

A Primal-dual Interior Method for Nonconvex Nonlinear Programming

  • David M. Gay
  • Michael L. Overton
  • Margaret H. Wright


Primal-dual interior methods for nonconvex nonlinear programming have recently been the subject of significant attention from the optimization community. Several different primal-dual methods have been suggested, along with some theoretical and numerical results. Although the underlying motivation for all of these methods is relatively uniform, there axe nonetheless substantive variations in crucial details, including the formulation of the nonlinear equations, the form of the associated linear system, the choice of linear algebraic procedures for solving this system, strategies for adjusting the barrier parameter and the Lagrange multiplier estimates, the merit function, and the treatment of indefiniteness. Not surprisingly, each of these choices can affect the theoretical properties and practical performance of the method. This paper discusses the approaches to these issues that we took in implementing a specific primal-dual method.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Argaez and R. A. Tapia (1997). On the global convergence of a modified augmented Lagrangian linesearch interior point Newton method for nonlinear programming, Report 95-38 (modified February 1997 ), Department of Computational and Applied Mathematics, Rice University, Houston, Texas.Google Scholar
  2. [2]
    R. H. Byrd, J. C. Gilbert, and J. Nocedal (1996). A trust region method based on interior point techniques for nonlinear programming, Technical Report OTC 96/02, Argonne National Laboratory, Argonne, Illinois.Google Scholar
  3. [3]
    R. H. Byrd, M. E. Hribar, and J. Nocedal (1997). An interior point algorithm for large-scale nonlinear programming, Technical Report, Northwestern University, Evanston, Illinois.Google Scholar
  4. [4]
    R. M. Chamberlain, C. Lemaréchal, H. C. Pedersen, and M. J. D. Powell (1982). The watchdog technique for forcing convergence in algorithms for constrained optimization,Math. Prog. Study 16, 1–17.MATHCrossRefGoogle Scholar
  5. [5]
    S. H. Cheng and N. J. Higham (1996). A modified Cholesky algorithm based on a symmetric indefinite factorization, Report 289, Department of Mathematics, University of Manchester, Manchester, United Kingdom.Google Scholar
  6. [6]
    A. R. Conn, N. I. M. Gould, and P. L. Toint (1996). A primal-dual algorithm for minimizing a non-convex function subject to bound and linear equality constraints, Report RC 20639, IBM T. J. Watson Research Center, Yorktown Heights, New York.Google Scholar
  7. [7]
    I. Bongartz, A. R. Conn, N. Gould, and Ph. Toint (1995). CUTE: Constrained and unconstrained testing environment,ACM Trans. Math. Software 21, 123–160.MATHCrossRefGoogle Scholar
  8. [8]
    A. S. El-Bakry, R. A. Tapia, T. Tsuchiya, and Y. Zhang (1996). On the formulation and theory of the Newton interior-point method for nonlinear programming,J. Opt. Theory Appl. 89, 507–541.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    A. V. Fiacco and G. P. McCormick (1968),Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York. Republished by SIAM, Philadelphia, 1990.MATHGoogle Scholar
  10. [10]
    R. Fletcher (1987).Practical Methods of Optimization ( second edition ), John Wiley and Sons, Chichester.MATHGoogle Scholar
  11. [11]
    A. Forsgren añd P. E. Gill (1996). Primal-dual interior methods for non- convex nonlinear programming, Report NA 96-3, Department of Mathematics, University of California, San Diego.Google Scholar
  12. [12]
    A. Forsgren, P. E. Gill, and W. Murray (1995). Computing modified Newton directions using a partial Cholesky factorization,SIAM J. Sci. Comp. 16, 139–150.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    A. Forsgren, P. E. Gill, and J. R. Shinnerl (1996). Stability of symmetric ill-conditioned systems arising in interior methods for constrained optimization,SIAM J. Matrix Anal. Appl. 17, 187–211.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    D. M. Gay, M. L. Overton, and M. H. Wright. Strategies for treating indef- initeness in a primal-dual method for nonconvex optimization, Technical Report, Bell Laboratories, Murray Hill, New Jersey, to appear.Google Scholar
  15. [15]
    P. E. Gill and W. Murray (1974). Newton-type methods for unconstrained and linearly constrained optimization.Mathematical Programming 28, 311–350.MathSciNetCrossRefGoogle Scholar
  16. [16]
    P. E. Gill, W. Murray and M. H. Wright (1981),Practical Optimization, Academic Press, London and New York.MATHGoogle Scholar
  17. [17]
    C. C. Gonzaga (1992). Path following methods for linear programming,SIAM Review 34, 167–224.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    W. Hock and K. Schittkowski (1981).Test Examples for Nonlinear Programming Codes, Springer-Verlag, Berlin.MATHGoogle Scholar
  19. [19]
    G. P. McCormick (1991). The superlinear convergence of a nonlinear primal-dual algorithm, Report T-550/91, Department of Operations Research, George Washington University, Washington, DC.Google Scholar
  20. [20]
    S. M. Robinson (1974). Perturbed Kuhn-Tucker points and rates of convergence for a class of nonlinear programming algorithms,Mathematical Programming 7, 1–16.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    R. B. Schnabel and E. Eskow (1990). A new modified Cholesky factorization,SIAM J. Sci. Stat. Comp. 11, 1136–1158.MathSciNetMATHCrossRefGoogle Scholar
  22. [22]
    G. W. Stewart and J. Sun (1990).Matrix Perturbation Theory, Academic Press, Boston.MATHGoogle Scholar
  23. [23]
    M. H. Wright (1992). Interior methods for constrained optimization, in A. Iserles (ed.),Acta Numerica 1992, 341–407, Cambridge University Press, New York.Google Scholar
  24. [24]
    M. H. Wright (1994). Some properties of the Hessian of the logarithmic barrier function,Mathematical Programming 67, 265–295.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    M. H. Wright (1995). Why a pure primal Newton barrier step may be infeasible,SI AM Journal on Optimization 5, 1–12.MATHCrossRefGoogle Scholar
  26. [26]
    M. H. Wright (1997). Ill-conditioning and computational error in primal- dual methods for nonlinear programming, Technical Report 97-4-04, Computing Sciences Research Center, Bell Laboratories, Murray Hill, New Jersey.Google Scholar
  27. [27]
    S. J. Wright (1996). Modifying the Cholesky factorization in interior- point methods. Technical Report ANL/MCS-P600-0596, Argonne National Laboratory, Argonne, Illinois.Google Scholar
  28. [28]
    S. J. Wright (1997).Primal-Dual Interior-Point Methods, Society for Industrial and Applied Mathematics, Philadelphia.MATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • David M. Gay
    • 1
  • Michael L. Overton
    • 2
  • Margaret H. Wright
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA
  2. 2.New York UniversityNew YorkUSA

Personalised recommendations