Reptiles, as a group, are most interesting subjects for the study of telencephalic development, because it is in reptiles that the differentiation of cortical regions first becomes obvious. The relative simplicity of the reptilian telencephalon and its position intermediate between amphibian and mammalian telencephalic development offer further inducements to its study. Of particular interest to students of development of the central nervous system and those attempting to define homologous structures is the observation that the development of the reptilian brain parallels the development of mammalian brains (Warner, 1946) and that many similarities exist between the final adult reptilian telencephalon and intermediate stages of mammalian telencephalic ontogenetic development (Humphrey, 1967). Interestingly, reptiles differ among themselves considerably and must be considered an exceptionally heterogeneous group. It is therefore somewhat surprising that with the exception of a few scattered reports (Meyer, 1892, 1895; Rabl-Ruckhard, 1894; Edinger, 1896; Ariëns Kappers and Theunissen, 1908; DeLange, 1911; Rose, 1923; Ariëns Kappers et al., 1960), one serious series of investigations (Warner, 1931, 1946, 1947), and a short paper by Carey (1967) little attention has been paid in the past to the study of the ophidian telencephalon. It has only been within the past 3–4 years that experimental work has been reported on the telencephalon of snakes. It will become clear as this chapter progresses that the major current work on the ophidian telencephalon is occurring in Dr. Philip Ulinski’s laboratory and my own.


Olfactory Bulb Main Olfactory Bulb Medial Cortex Accessory Olfactory Bulb Anterior Olfactory Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ariëns Kappers, C. U., and Theunissen, W. F., 1908, Die Phylogenese des Rhombencephalons, des Corpus striatum und der Vorderhirn Kommissuren, Folia Neurobiol. 1: 173.Google Scholar
  2. Ariëns Kappers, C. U., Huber, G. C., and Crosby, E. C., 1960, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, Hafner, New York.Google Scholar
  3. Butler, A. B., and Ebner, F. F., 1972, Thalamotelencephalic projections in the lizard Iguana iguana. Anat. Rec. 172: 282.Google Scholar
  4. Carey, J. H., 1967, The nuclear pattern of the telencephalon of the Blacksnake, Coluber constrictor constrictor, in: Evolution of the Forebrain ( R. Hassler and H. Stephan, eds.), pp. 73–80, Plenum Press, New York.Google Scholar
  5. Colman, D. R., Scalia, F., and Cabrales, E., 1976, Light and electron microscopic observations on the anterograde transport of horseradish peroxidase in the optic pathway in the mouse and rat, Brain Res. 102: 156.CrossRefGoogle Scholar
  6. Crosby, E. C., 1917, The forebrain of Alligator mississippiensis, J. Comp. Neurol. 27: 325.CrossRefGoogle Scholar
  7. Crosby, E. C., and Humphrey, T., 1939, Studies of the vertebrate telencephalon. I. The nuclear configuration of the olfactory and accessory olfactory formations and of the nucleus olfactorius anterior of certain reptiles, birds, and mammals, J. Comp. Neurol. 71: 121.Google Scholar
  8. Crosby, E. C., Humphrey, T., and Lauer, E. U., Correlative Anatomy of the Nervous System, Macmillan, New York.Google Scholar
  9. Crosby, E. C., and Woodburne, R. T., 1940, The comparative anatomy of the preoptic area and the hypothalamus, in: The Hypothalamus and Central Levels of Autonomic Function, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 20: 52.Google Scholar
  10. Crosby, E. C., Dejonge, B. R., and Schneider, R. C., 1967, Evidence for some of the trends in the phylogenetic development of the vertebrate telencephalon, in: Evolution of the Forebrain ( R. Hassler and H. Stephan, eds.), pp. 117–135, Plenum Press, New York.Google Scholar
  11. Curwen, A. O., 1939, The telencephalon of Tupinambis nigropunctatus. III. Amygdala, J. Comp. Neurol. 71: 613.CrossRefGoogle Scholar
  12. DeLange, S. J., 1911, Das Vorderhirn der Reptilien, Folia Neurobiol. 5: 548.Google Scholar
  13. Durward, A., 1930, The cell masses in the forebrain of Sphenodon punctatum, J. Anat. 65: 8.Google Scholar
  14. Edinger, L., 1896, Untersuchungen über die vergleichende Anatomie des Gehirns. III. Neue Studien über das Vorderhirn der Reptilien, Abh. Senckenb. Naturforsch. Ges. 19: 313.Google Scholar
  15. Fink, R. P., and Heimer, L., 1967, Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system, Brain Res. 4: 369.CrossRefGoogle Scholar
  16. Frederikse, A., 1931, The Lizard’s Brain: An Investigation of the Histological Structure of the Brain of Lacerta vivipara, C. C. Callenback, Nijerk.Google Scholar
  17. Hall, W. C., and Ebner, F. F., 1970, Thalamotelencephalic projections in the turtle (Pseudemys scripta), J. Comp. Neurol. 140: 101.CrossRefGoogle Scholar
  18. Halpern, M., 1973, Olfactory bulb and accessory olfactory bulb projections in the snake, Thamnophis sirtalis, Anat. Rec. 175: 337.Google Scholar
  19. Halpern, M., 1974, An experimental demonstration of the fornix system in a snake, Soc. Neurosci. 4th Annu. Meet.Google Scholar
  20. Halpern, M., 1976a, Efferent connections of the lateral and dorsal cortices of snakes of the genus Thamnophis, Anat. Rec. 184: 421.Google Scholar
  21. Halpern, M., 1976b, The efferent connections of the olfactory bulb and accessory olfactory bulb in the snakes, Thamnophis sirtalis and Thamnophis radix, J. Morphol. 150: 553.Google Scholar
  22. Halpern, M., and Silfen, R., 1974, The efferent connections of the nucleus sphericus in the garter snake, Thamnophis sirtalis, Anat. Rec. 178: 368.Google Scholar
  23. Humphrey, T., 1967, The development of the human hippocampal formation correlated with some aspects of its phylogenetic history, in: Evolution of the Forebrain ( R. Hassler and H. Stephan, eds.), pp. 104–116, Plenum Press, New York.Google Scholar
  24. Kowell, A. P., 1974, The olfactory and accessory olfactory bulbs in constricting snakes: Neuroanatomy and behavioral observations, Diss. Abstr. 35(4): 1490B.Google Scholar
  25. Kristensson, K., and Olsson, J. 1971, Retrograde axonal transport of protein, Brain Res. 29: 363.CrossRefGoogle Scholar
  26. Meyer, A., 1892, Über das Vorderhirn einiger Reptilien, Z. Wiss. Zool. 55: 63.Google Scholar
  27. Meyer, A., 1895, Zur Homologie der Fornixcommissur und des Septum lucidum bei den Reptilien und Säugern, Anat. Anz. 10: 474.Google Scholar
  28. Pritz, M. D., 1973, Connections of the alligator visual system: Telencephalic projections of nucleus rotundus, Anat. Rec. 175: 416.Google Scholar
  29. Rabl-Ruckhard, H., 1894, Einiges über das Gehirn der Riesenschlange, Z. Wiss. Zool. 58: 694.Google Scholar
  30. Riss, W., Halpern, M., and Scalia, F., 1969, The quest for clues to forebrain evolution—The study of reptiles, Brain Behav. Evol. 2: 1.CrossRefGoogle Scholar
  31. Rose, M., 1923, Histologische Lokalisation des Vorderhirns der Reptilien,J. Psychol. Neurol. Lpz. 29: 219.Google Scholar
  32. Rudin, W., 1974, Untersuchungen am olfaktorischen System der Reptilien. III. Differenzierungsformen einiger olfaktorischer Zentren bei Reptilien, Acta. Anat. 89: 481.CrossRefGoogle Scholar
  33. Senn, D. G., and Northcutt, R. G., 1973, The forebrain and midbrain of some squamates and their bearing on the origin of snakes, J. Morphol. 140: 135.CrossRefGoogle Scholar
  34. Ulinski, P. S., 1974, Cytoarchitecture of cerebral cortex in snakes, J. Comp. Neurol. 158: 243.CrossRefGoogle Scholar
  35. Ulinski, P. S., 1975, Corticoseptal projections in the snakes Natrix sipedon and Thamnophis sirtalis, J. Comp. Neurol. 164: 375.CrossRefGoogle Scholar
  36. Ulinski, P. S., 1976a, Structure of the anterior dorsal ventricular ridge in snakes, J. Morphol. 148: 1.CrossRefGoogle Scholar
  37. Ulinski, P. S., 1976b, Intracortical connections in the snakes Natrix sipedon and Thamnophis sirtalis, J. Morphol. 150: 463.Google Scholar
  38. Ulinski, P. S., and Kanarek, D. A., 1973, Cytoarchitecture of nucleus sphericus in the common boa, Constrictor constrictor, J. Comp. Neurol. 151: 159.CrossRefGoogle Scholar
  39. Warner, F. J., 1931, The cell masses of the telencephalon and diencephalon of the rattlesnake, Crotalus atrox, Proc. Acad. Sei. Amsterdam 34: 1156.Google Scholar
  40. Warner, F. J., 1946, The development of the forebrain of the American diamond-back rattlesnake, Proc. Zool. Soc. London 116: 22.CrossRefGoogle Scholar
  41. Warner, F. J., 1947, The fiber tracts of the forebrain of the American diamond-back rattlesnake (Crotalus adamanteus), Proc. Zool. Soc. London 116: 22.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Mimi Halpern
    • 1
  1. 1.Department of Anatomy and Program in Biological PsychologyDownstate Medical CenterBrooklynUSA

Personalised recommendations