Biosynthesis of Glycoproteins

  • C. J. Waechter
  • M. G. Scher


Studies on the wide diversity of biological functions performed by soluble and membrane-bound glycoproteins in mammalian tissues have become a major theme in the research of a large number of biochemists and cell biologists, as well as neurochemists. One focal point in these investigations has been the possibility that cell-surface glycoproteins and glycosyltrans- ferases play a role in cell-cell contact relationships (Roseman, 1970). An extensive list of investigations in nervous tissue has been stimulated by the postulated roles of membrane glycoproteins and membrane surface glycosyl- transferases in interneuronal recognition (Barondes, 1970) and the myelina- tion of axon plasma membranes (Brady and Quarles, 1973). A thorough knowledge of the structures, metabolism, and regional and subcellular location of the brain membrane glycoproteins will be prerequisite to understanding their precise neurological functions. Many of these aspects of glycoprotein neurochemistry are covered in detail elsewhere in this volume.


Brain Membrane Sugar Nucleotide Oligosaccharide Chain Synaptosomal Preparation Central Nervous Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barondes, S. H., 1970, Brain glycomacromolecules and intraneuronal recognition, in: Brain Glycoconjugates and Intraneuronal Recognition ( F. O. Schmitt, ed.), pp. 747–760, Rockefeller University Press, New York.Google Scholar
  2. Barondes, S. H., 1974, Synaptic macromolecules: Identification and metabolism, Annu. Rev. Biochem. 43: 147.PubMedCrossRefGoogle Scholar
  3. Behrens, N. H., Parodi, A. J., Leloir, L. F., and Krisman, C. R., 1971A, The role of dolichol monophosphate in sugar transfer, Arch. Biochem. Biophys. 143:375.CrossRefGoogle Scholar
  4. Behrens, N. H., Parodi, A. J., and Leloir, L. F., 1971b, Glucose transfer from dolichol monophosphate glucose: The product formed with endogenous microsomal acceptor, Proc. Natl. Acad. Sci. U.S.A. 68: 2857.PubMedCrossRefGoogle Scholar
  5. Belon, P., Broquet, P., Guidollet, J., Guillaumond, M., Levrat, C., Martin, A., Neveu, F., Richard, M., and Louisot, P., 1975, Séparation des isoenzymes des glucosyltransferases par e’lectrofocalisation sur colonne, C. R. Acad. Sci. Ser. D 280: 767.Google Scholar
  6. Bosmann, H. B., 1972, Synthesis of glycoproteins in brain: Identification, purification and properties of glycosyltransferases from purified synaptosomes of guinea pig cerebral cortex, J. Neurochem. 19: 763.PubMedCrossRefGoogle Scholar
  7. Bosmann, H. B., 1973, Synthesis of glycoproteins in brain: Identification, purification and properties of a synaptosomal sialyltransferase utilizing endogenous and exogenous acceptors, J. Neurochem. 20: 1037.PubMedCrossRefGoogle Scholar
  8. Bosmann, H. B., and Hemsworth, B. A., 1970, Intraneural mitochondria, incorporation of amino acids and monosaccharides into macromolecules by isolated synaptosomes and synaptosomal mitochondria, J. Biol. Chem. 245: 363.PubMedGoogle Scholar
  9. Brady, R. O., and Quarles, R. H., 1973, The enzymology of myelination, Mol. Cell. Biochem. 2: 23.PubMedCrossRefGoogle Scholar
  10. Breckenridge, W. C., and Wolfe, L. S., 1973, The effect of dolichol phosphate on the synthesis of lipid bound sugars in embryonic chick brain, FEBS Lett. 29: 66.PubMedCrossRefGoogle Scholar
  11. Breckenridge, W. C., Wolfe, L. S. and Ng Ying Kin, N. M. K., 1973, The structure of brain polyisoprenols, J. Neurochem. 21: 1311.PubMedCrossRefGoogle Scholar
  12. Broquet, P., and Louisot, P., 1971, Biosynthese des glycoproteins cerebrales. II. Localisation subcellulaire des transglycosylases cerebrales, Biochimie 53: 921.PubMedCrossRefGoogle Scholar
  13. Broquet, P., Richard, M., and Louisot, P., 1971. Biosynthese des glycoproteins cerebrales: Etude de l’activite mannosyltransferase particulee du cerveaym J. Neurochem. 18: 2291.PubMedCrossRefGoogle Scholar
  14. Broquet, P., Morelis, R., and Louisot, P., 1975a, Biosynthese des glycoproteins cerebrales: Etude de l’activite mannosyltransferase mitochondriale, J. Neurochem. 24:989.CrossRefGoogle Scholar
  15. Broquet, P., Morelis, R., and Louisot, P., 1975b, Evidence for the existence of a cerebral mitochondrial mannosyltransferase, Biochimie 57:983.CrossRefGoogle Scholar
  16. Butler, N. A., Lee, E. Y. C., and Whelan, W. J., 1977, A protein-bound glycogen component of rat liver, Carbohydr. Res. 55: 73.PubMedCrossRefGoogle Scholar
  17. Chen, W. W., and Lennarz, W. J., 1976, Participation of a trisaccharide-lipid in glycosylation of oviduct membrane glycoproteins, J. Biol. Chem. 251: 7802.PubMedGoogle Scholar
  18. Chen, W. W., and Lennarz, W. J., 1977, Metabolism of lipid-linked jV-acetylglucosamine intermediates, J. Biol. Chem. 252: 3473.PubMedGoogle Scholar
  19. Den, H., and Kaufman, B., 1968, Ganglioside and glycoprotein glycosyltransferases in synaptosomes, Fed. Proc. Fed. Am. Soc. Exp. Biol. 27: 346.Google Scholar
  20. Den, H., Kaufman, B., and Roseman, S., 1970, Properties of some glycosyltransferases in embryonic chicken brain, J. Biol. Chem. 245: 6607.PubMedGoogle Scholar
  21. Den, H., Kaufman, B., McGuire, E. J., and Roseman, S., 1975, The sialic acids. XVIII. Subcellular distribution of seven glycosyltransferases in embryonic chicken brain, J. Biol. Chem. 250: 739.PubMedGoogle Scholar
  22. Duksin, D., and Bornstein, P., 1977, Impaired conversion of procollagen to collagen by fibroblasts and bone treated with tunicamycin, an inhibitor of protein glycosylation, J. Biol. Chem. 252: 955.PubMedGoogle Scholar
  23. Garfield, S., and Ilan, J., 1976, Galactosyltransferase activities during embryonic development of chick neural tissue, Biochim. Biophys. Acta 444: 154.PubMedCrossRefGoogle Scholar
  24. Gielen, W., and Hinzen, D. H., 1974, Acetylneuraminat-Cytidyltransferaseund Sialyltransferase in isolierten neuronal und Gliazellen des Rattengehirns, Z. Physiol. Chem. 355: 895.CrossRefGoogle Scholar
  25. Gottschalk, A. (ed.), 1972, Glycoproteins, Elsevier, Amsterdam.Google Scholar
  26. Harford, J. B., and Waechter, C. J., 1978, Mannosylphosphoryldolichol as a mannosyl donor in pig brain white matter, Trans. Am. Soc. Neurochem. 9: 170.Google Scholar
  27. Harford, J. B., Waechter, C. J., and Earl, F. L., 1977, Effect of exogenous dolichyl monophosphate on a developmental change in mannosylphosphoryldolichol biosynthesis, Biochem. Biophys. Res. Commun. 76: 1036.PubMedCrossRefGoogle Scholar
  28. Harford, J. B., Waechter, C. J., Saul, R., and DeVries, G. H., 1979, Evidence for the biosynthesis of mannosylphosphoryldolichol and N-acetylglucosaminyl-pyrophosphoryl- dolichol by an axolemma-enriched membrane preparation from bovine white matter, J. Neurochem. 32: 91.PubMedCrossRefGoogle Scholar
  29. Hemming, F. W., 1977, Dolichol phosphate, a coenzyme in the glycosylation of animal membrane-bound glycoproteins, Biochem. Soc. Trans. 5: 1223.PubMedGoogle Scholar
  30. Jankowski, W., and Chojnacki, T., 1972, Formation of lipid-linked sugars in rat liver and brain microsomes, Biochim. Biophys. Acta 260: 93.PubMedGoogle Scholar
  31. Jato-Rodriguez, J. J., and Mookerjea, S., 1974, UDP-galactose:glycoprotein galactosyltransferase activity in tissues of developing rat, Arch. Biochem. Biophys. 162: 281.PubMedCrossRefGoogle Scholar
  32. Kean, E. L., 1977, GDP-mannose-polyprenyl phosphate mannosyltransferases of the retina, J. Biol. Chem. 252: 5622.PubMedGoogle Scholar
  33. Ko, G. K. W.,and Raghupathy, E., 1971, Glycoprotein biosynthesis in the developing rat brain, Biochim. Biophys. Acta 244: 396.Google Scholar
  34. Ko, G. K. W., and Raghupathy, E., 1972, Glycoprotein biosynthesis in the developing rat brain. II. Microsomal galactosyltransferase utilizing endogenous and exogenous protein acceptors, Biochim. Biophys. Acta 264: 129.PubMedCrossRefGoogle Scholar
  35. Ko, G. K. W., and Raghupathy, E., 1973, Glycoprotein biosynthesis in the developing rat brain. IV. Effects of guanosine nucleotides on soluble glycoproteins galactosyl- and N-acetyl- galactosaminyltransferases, Biochim. Biophys. Acta 313: 277.PubMedCrossRefGoogle Scholar
  36. Kornfeld, R., and Kornfeld, S., 1976, Comparative aspects of glycoprotein structure, Annu. Rev. Biochem. 45: 217.PubMedCrossRefGoogle Scholar
  37. Krag, S. S., and Robbins, P. W., 1977, Sindbis envelope proteins as endogenous acceptors in reactions of guanosine diphosphate [14C]mannose with preparations of infected chicken embryo fibroblasts, J. Biol. Chem. 252: 2621.PubMedGoogle Scholar
  38. Krisman, C. P., and Barengo, R., 1975, A precursor of glycogen biosynthesis: a-4-Glucan protein, Eur. J. Biochem. 52: 117.PubMedCrossRefGoogle Scholar
  39. Kuo, S.-C., and Lampen, J. O., 1974, Tunicamycin—an inhibitor of yeast glycoprotein biosynthesis, Biochem. Biophys. Res. Commun. 58: 287.PubMedCrossRefGoogle Scholar
  40. Leavitt, R., Schlesinger, S., and Kornfeld, S., 1977, Tumicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis viruses, J. Virol. 21: 375.PubMedGoogle Scholar
  41. Lehle, L., and Tanner, W., 1976, The specific site of tunicamycin inhibition in the formation of dolichol-bound yV-acetylglucosamine derivatives, FEBS Lett. 71: 167.CrossRefGoogle Scholar
  42. Lennarz, W. J., 1975, Lipid-linked sugars in glycoprotein synthesis, Science 188: 986.PubMedCrossRefGoogle Scholar
  43. Lennarz, W. J., and Scher, M. G., 1972, Metabolism and function of polyisoprenol sugar intermediates in membrane-associated reactions, Biochim. Biophys. Acta 265: 417.PubMedGoogle Scholar
  44. Levy, J. A., Carminatti, H., Cantarella, A. I., Behrens, N. H., Leloir, L. F., and Tabora, E., 1974, Mannose transfer to lipid linked di-TV-acetylchitobiose, Biochem. Biophys. Res. Commun. 60: 118.PubMedCrossRefGoogle Scholar
  45. Louisot, P., Belon, P., and Broquet, P., 1976, Cinetiques des reactions de glycosylation dans la biosynthese des glycoproteines: Mecanisme Bi-Bi ordonne des glycosyltransferases et cooperatives, C. R. Acad. Sci. Ser. D 283: 401.Google Scholar
  46. Lucas, J. J., and Levine, E., 1977, Increase in the lipid intermediate pathway of protein glycosylation during hen oviduct differentiation, J. Biol. Chem. 252: 4330.PubMedGoogle Scholar
  47. Lucas, J. J., and Waechter, C. J., 1976, Polyisoprenoid glycolipids involved in glycoprotein biosynthesis, Mol. Cell. Biochem. 11: 67.PubMedCrossRefGoogle Scholar
  48. Mookerjea, S., and Schimmer, B. P., 1975, UDP-galactose: glycoprotein galactosyltransferase activity in a clonal line of rat glial tumor cells and in rat brain, Biochim. Biophys. Acta 384: 381.PubMedGoogle Scholar
  49. Morgan, I. G., Reith, M., Marinari, U., Breckenridge, W. C., and Gombos, G., 1972, The isolation and characterization of synaptosomal plasma membranes, Adv. Exp. Med. Biol. 25: 209.Google Scholar
  50. Ng, S. S., and Dain, 1977a, Sialyltransferases in rat brain: Reaction kinetics, product analyses, and multiplicities of enzyme species, J. Neurochem. 29: 1075.PubMedCrossRefGoogle Scholar
  51. Ng, S. S., and Dain, J. A., 1977b, Sialyltransferases in rat brain: Intracellular localization and some membrane properties, J. Neurochem. 29: 1085.PubMedCrossRefGoogle Scholar
  52. Parodi, A., and Leloir, L. F., 1976, Lipid intermediates in protein glycosylation, Trends Biochem. Sci. 1: 58.Google Scholar
  53. Parodi, A. J., Staneloni, R., Cantarella, A. I., Leloir, L. F., Behrens, N. H., Carminatti, H., and Levy, J. A., 1973, Further studies on a glycolipid formed from dolichyl-D-glucosyl monophosphate, Carbohydr. Res. 26: 393.PubMedCrossRefGoogle Scholar
  54. Pattabiraman, T. N., Sekhara Varma, T. N., and Bachhawat, B. K., 1964, Enzymicdegradation of uridine diphosphoacetylglucosamine, Biochim. Biophys. Acta 83: 74.PubMedGoogle Scholar
  55. Raghupathy, E., Ko, G. K. W., and Peterson, N. A., 1972, Glycoprotein biosynthesis in the developing rat brain. III. Glycoprotein glycosyltransferases present in synaptosomes, Biochim. Biophys. Acta 286: 339.PubMedCrossRefGoogle Scholar
  56. Reith, M., Morgan, J. G., Gombos, G., Breckenridge, W. C., and Vincendon, G., 1972, Synthesis of synaptic glycoproteins. I. The distribution of UDP-galactose: N-acetylglucosamine galactosyltransferase and thiamine diphosphate in adult rat brain subcellular fractions, Neurobiology 2: 169.PubMedGoogle Scholar
  57. Robbins, P. W., Hubbard, S. C., Turco, S. J., and Wirth, D. F., 1977, Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins, Cell 12: 893.PubMedCrossRefGoogle Scholar
  58. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglucosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5: 270.PubMedCrossRefGoogle Scholar
  59. Scher, M. G., and Waechter, C. J., 1978a, Glucolipid intermediates in calf brain glycoprotein assembly, Trans. Am. Soc. Neurochem. 9:170.Google Scholar
  60. Scher, M. G., and Waechter, C. J., 1978b, Possible role of membrane-bound glucosidase in the processing of calf brain glycoproteins, in: Abstracts, Second Meeting of the European Society of Neurochemistry, Vol. 1, p. 559, Verlag Chemie, Weinheim.Google Scholar
  61. Scher, M. G., Jochen, A., and Waechter, C. J., 1977, Biosynthesis of glucosylated derivatives of dolichol: Possible intermediates in the assembly of white matter glycoproteins, Biochemistry 16: 5037.PubMedCrossRefGoogle Scholar
  62. Schwarz, R. T., Rohrschneider, J. M., and Schmidt, M. R. G., 1976, Suppression of glycoprotein formation of Semliki forest, influenza, and avian sarcoma virus by tunicamycin, J. Virol. 19: 782.PubMedGoogle Scholar
  63. Spiro, R. G., Spiro, M. J., and Bhoyroo, V. D., 1976, Lipid-saccharide intermediates in glycoprotein biosynthesis. II. Studies on the structure of an oligosaccharide-lipid from thyroid, J. Biol. Chem. 251: 6409.PubMedGoogle Scholar
  64. Struck, D. K., and Lennarz, W. J., 1977, Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccharide chain of ovalbumin, J. Biol. Chem. 252: 1007.PubMedGoogle Scholar
  65. Takatsuki, A., and Tamura, G., 1971, Effect of tunicamycin on the synthesis of macromolecules in cultures of chick embryo fibroblasts infected with Newcastle disease virus, J. Antibiot. 24: 785.PubMedGoogle Scholar
  66. Takatsuki, A., Arima, K., and Tamura, G., 1971, Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin, J. Antibiot. 24: 215.PubMedGoogle Scholar
  67. Takatsuki, A., Kohno, K., and Tamura, G., 1975, Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin, Agric. Biol. Chem. 39: 2089.CrossRefGoogle Scholar
  68. Takatsuki, A., Kawamura, K., Okina, M., Kodama, T. I., and Tamura, G., 1977, The structure of tunicamycin, Agric. Biol. Chem. 41: 2307.CrossRefGoogle Scholar
  69. Tkacz, J. S., and Lampen, J. O., 1975, Tunicamycin inhibition of polyisoprenyl N-acetylglucos- aminyl pyrophosphate formation in calf-liver microsomes, Biochem. Biophys. Res. Commun. 65: 248.PubMedCrossRefGoogle Scholar
  70. Van den Eijnden, D. H., and Van Dijk, W., 1974, Properties and regional distribution of cerebral CMP-N-acetylneuraminic acid: glycoprotein sialytransferase, Biochim. Biophys. Acta 362: 136.CrossRefGoogle Scholar
  71. Van den Eijnden, D. H., Van Dijk, W., and Roukema, P. A., 1975, Sialoglycoprotein synthesis in developing rat brain, Neurobiology 5: 221.PubMedGoogle Scholar
  72. Waechter, C. J., and Harford, J. B., 1977, Evidence for the enzymatic transfer of N-acetylglu- cosamine from UDP-Ar-acetylglucosamine into dolichol derivatives and glycoproteins by calf membranes, Arch. Biochem. Biophys. 181: 185.PubMedCrossRefGoogle Scholar
  73. Waechter, C. J., and Harford, J. B., 1979, A dolichol-linked trisaccharide from central nervous tissue: Structure and biosynthesis, Arch. Biochem. Biophys. 192: 380.PubMedCrossRefGoogle Scholar
  74. Waechter, C. J., and Lennarz, W. J., 1976, The role of polyprenol-linked sugars in glycoprotein synthesis, Annu. Rev. Biochem. 45: 95.PubMedCrossRefGoogle Scholar
  75. Waechter, C. J., and Scher, M. G., 1978, Glucosylphosphoryldolichol: Role as a glucosyl donor in the biosynthesis of an oligosaccharide lipid intermediate by calf brain membranes, Arch. Biochem. Biophys. 188: 385.PubMedCrossRefGoogle Scholar
  76. Waechter, C. J., Kennedy, J. L., and Harford, J. B., 1976, Lipid intermediates involved in the assembly of membrane-associated glycoproteins in calf brain white matter, Arch. Biochem. Biophys. 174: 726.PubMedCrossRefGoogle Scholar
  77. Warren, C. D., Liu, I. Y., Herscovics, A., and Jeanloz, R. W., 1975, The synthesis and chemical properties of polyisoprenyl N-D-mannopyranosyl phosphates, J. Biol. Chem. 250: 8069.PubMedGoogle Scholar
  78. Wolfe, L. S., Breckenridge, W. C., and Skelton, P. P. C., 1974, Involvement of mannosylphos- phoryldolichols in mannose transfer to brain glycoproteins, J. Neurochem. 23: 175.PubMedCrossRefGoogle Scholar
  79. Zatz, M., and Barondes, S. H., 1969, Incorporation of mannose into mouse brain lipid, Biochem. Biophys. Res. Commun. 36: 511.PubMedCrossRefGoogle Scholar
  80. Zatz, M.,and Barondes, S. H., 1971, Particulate and solubilized fucosyltransferases from mouse brain, J. Neurochem. 18: 1625.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • C. J. Waechter
    • 1
  • M. G. Scher
    • 1
  1. 1.Department of BiochemistryUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations