• M. F. Land
Part of the NATO ASI Series book series (NSSA, volume 74)


Although one usually thinks of the Crustacea as linked to the insects by the presence of an exoskeleton and compound eyes, there is actually a much greater diversity of eye types in the Crustacea than in the insects or any other invertebrate group. The copepods, for example, have no compound eyes, but a single tripartite nauplius eye. In most this is a simple structure with little in the way of optics, but in one or two groups it has developed into separate eyes equipped with complex optical systems. In the pontellids the eyes are sexually dimorphic, the males having the more complex optics, and even though the eyes contain only 6 receptors it is clear that they are used to identify the females. Nauplius eyes are present in other groups too, but the only other occasion that they attain any size is in the deep-sea ostracod, Gigantocypris, where the eye’s optical system is based on two huge parabolic mirrors. The advantage here seems to be that the light gathering power is very great, in an almost lightless environment.

Apart from the copepods most groups have compound eyes of one sort or another. In the malacostraca: the isopods, amphipods, stomatopods and brachyuran crabs all have apposition eyes that are basically similar in design to those of diurnal insects, in which each lens forms a small inverted image immediately behind it. Since these are mainly aquatic animals, the corneal surface contributes little or nothing to the refracting power, and the lenses tend to be variants of the Exner “lens cylinder” in which the rays are focussed by inhomogeneities within the lens itself. Of the apposition eyes the most bizarre are found in deep-sea amphipods, many of which have double eyes and some, like Phronima have wide (10 μm) light guides up to 5 mm long joining the lens to the rhabdom.

Superposition eyes, in which the optical array forms a single erect image as in firefly and moth eyes, are found in 3 malacostracan groups: the mysids, euphausiids (krill) and the macrurous decapods (shrimps, crayfish and lobsters). The former two groups, however, use refracting optics to produce the image while the decapods use an array of radially arranged mirrors instead. It is characteristic of the latter type of eye that the corneal facets are square, because the optical mechanism requires the mirrors to act in pairs at 90° (corner reflectors) and this makes it easy to tell the two types of superposition eye apart. It looks as though the fundamental difference between these two types of eye may shed some light on the origins of the different malacostracan groups. (My view is that it was right before 1880 but has got worse since).

Physiologically and morphologically crustacean compound eyes are not very dissimilar from those of insects, and this holds for the visual nervous system too, which has the same layout. Does this mean that there is only one sensible way of designing compound eyes and their neural backup, or should we be looking for common ancestors?


Acceptance Angle Refractive Index Gradient Brachyuran Crab Crystalline Cone Apposition Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, A & Nilsson, D.-E. (1981) Fine structure and optical properties of an ostracode ( Crustacea) nauplius eye. Protoplasma 107: 361–374.CrossRefGoogle Scholar
  2. Ball, E.E. (1977) Fine structure of the compound eyes of the midwater amphipod Phronima in relation to behaviour and habitat. Tissue Cell 9: 521–536.CrossRefGoogle Scholar
  3. Barlow, R.B., Chamberlain, S.C. & Levinson, J.Z. (1980) Limulus brain modulates the structure and function of the lateral eyes. Science 210: 1037–1039.Google Scholar
  4. Barnes, R.D. (1980) Invertebrate Zoology. Fourth Edition. Philadelphia,Saunders College, 1089 pages.Google Scholar
  5. Behrens, M. & Krebs, W. (1976) The effect of light-dark adaptation on the ultrastructure of Limulus lateral eye retinular cells. 3. Comp. Physiol. 107: 77–96.Google Scholar
  6. Blest,A.D. (1978) The rapid synthesis and destruction of photoreceptor membrane by a dinopid spider. I. The daily cycle. Proc. R. Soc. Lond. 200B: 463–483.Google Scholar
  7. Blest,A.D. & Land, M.F. (1977) The physiological optics of Dinopis subrufus L. Koch: a fish-lens in a spider. Proc. R. Soc. Lond. 196B: 197–222.Google Scholar
  8. Bruno, M.S., Barnes, S.N. & Goldsmith, T.H. (1977) The visual pigment and visual cycle of the lobster Homarus. J. Comp. Physiol. 120: 123–142.Google Scholar
  9. Bryceson, K.P. (1981) Focusing of light by corneal lenses in a reflecting superposition eye. J. Exp. Biol. 90: 347–350.Google Scholar
  10. Caldwell, R.L. & Dingle, H. (1976) Stomatopods. Sci. Am. 234 (1): 80–89.CrossRefGoogle Scholar
  11. Caveney, S. & Mein tyre, P. (1981) Design of graded-index lenses in the superposition eyes of scarab beetles. Phil. Trans. R. Soc. Lond. 294B: 589–635.Google Scholar
  12. Cummins, D. & Goldsmith, T.H. (1981) Cellular identification of the violet receptor in the crayfish eye. 3. Comp. Physiol. 142: 199–202.Google Scholar
  13. Downing, A.C. (1972) Optical scanning in the lateral eyes of the copepod Copilia. Perception 1: 247–261.CrossRefGoogle Scholar
  14. Eguchi, E. & Waterman, T.H. (1966) Fine structure patterns in crustacean rhabdoms. In: The Functional Organization of the Compound Eye. Ed. C.G. Bernhard. Oxford, Pergamon Press, p. 105–124.Google Scholar
  15. Elofsson, R. (1965) The nauplius eye and frontal organs in Malacostracea ( Crustacea ). Sarsia 19: 1–54.Google Scholar
  16. Elofsson, R. (1966) The nauplius eye and frontal organs of the non- Malacostraca ( Crustacea ). Sarsia 25: 1–128.Google Scholar
  17. Exner, S. (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Leipzig und Wien: Deuticke.CrossRefGoogle Scholar
  18. Fahrenbach, W.H. (1964) The fine structure of a nauplius eye. Z. Zellforsch. 62: 182–197.Google Scholar
  19. Fletcher, A., Murphy, T. & Young, A. (1954) Solutions of two optical problems. Proc. R. Soc. Lond. 223A: 216–225.Google Scholar
  20. Forster, L. (1982) Visual communication in jumping spiders. In: Spider Communication. Ed. P.N. Witt & J.S. Rovner. Princeton, University Press, p. 161–212.Google Scholar
  21. Frisch, K.V. & Kupelwieser, H. (1913) Über den Einfluss der Lichtfarbe auf die phototaktischen Reaktionen niedere Krebse. Biol. Zentr. 33: 517–552.Google Scholar
  22. Frost, B.J. (1975) Eye movements in Daphnia pulex (De Geer). J. Exp. Biol. 62: 347–350.Google Scholar
  23. Gophen, M. & Harris, R.P. (1981) Visual predation by a marine cyclopoid copepod, Corycaeus anglicus. 3. Mar. Biol. Ass. U.K. 61: 391-399.Google Scholar
  24. Gregory, R.L., Ross, H.E. & Moray, N. (1964) The curious eye of Copilia. Nature (Lond.) 201: 1166.CrossRefGoogle Scholar
  25. Grenacher, H. (1879) Untersuchungen Über das Sehorgan der Arthropoden, insbesondere der Spinnen, Insecten und Crustaceen. Göttingen; Vandenhoeck und Ruprecht.Google Scholar
  26. Horridge, G.A. (1975) Optical mechanisms of clear zone eyes. In: The Compound Eye and Vision of Insects. Ed. G.A. Horridge. Oxford, Clarendon Press, p. 255–298.Google Scholar
  27. Horridge, G.A. (1978) The separation of visual axes in apposition compound eyes. Phil. Trans. R. Soc. 285B: 1–59.Google Scholar
  28. Kuiper, 3.W. (1962) The optics of the compound eye. Symp. Soc. Exp. Biol. 16: 58–71.Google Scholar
  29. Kunze, P. (1979) Apposition and superposition eyes. In: Handbook of Sensory Physiology. Vol. VII/6A. Ed. H. Autrum. Berlin, Springer, p. 441–502.Google Scholar
  30. Land, M.F. (1965) Image formation by a concave reflector in the eye of the scallop Pecten maximus. 3. Physiol. ( Lond. ) 179: 138–153.Google Scholar
  31. Land, M.F. (1972a) The physics and biology of animal reflectors. Prog. Biophys. Mol. Biol. 24: 75–106.Google Scholar
  32. Land, M.F. (1972b) Mechanisms of orientation and pattern recognition by jumping spiders (Salticidae). In: Information Processing in the Visual Systems of Arthropods. Ed. R. Wehner. Berlin, Springer, p. 231–247.CrossRefGoogle Scholar
  33. Land, M.F. (1976) Superposition images are formed by reflection in the eyes of some oceanic decapod crustacea. Nature (Lond.) 263: 764–765.CrossRefGoogle Scholar
  34. Land, M.F. (1978) Animal eyes with mirror optics. Sei. Am. 239 (6): 126–134.Google Scholar
  35. Land, M.F. (1979) The optical mechanism of the eye of Limulus. Nature (Lond.) 280: 396–397.CrossRefGoogle Scholar
  36. Land, M.F. (1980) Compound eyes: old and new optical mechanisms. Nature (Lond.) 287: 681–686.CrossRefGoogle Scholar
  37. Land, M.F. (1981a) Optics and vision in invertebrates. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed. H. Autrum. Berlin, Springer, p. 471–592.Google Scholar
  38. Land, M.F. (1981b) Optical mechanisms in the higher Cructacea with a comment on their evolutionary origins. In: Sense Organs. Ed. M.S. Laverack & D.J. Cosens. Glasgow, Blackie, p. 31–48.Google Scholar
  39. Land, M.F. (1981c) Optics of the eyes of Phronima and other deep-sea amphipods. J. Comp. Physiol. 145: 209–226.Google Scholar
  40. Land, M.F. (1983) Mollusca (This volume).Google Scholar
  41. Land, M.F. & Burton, F.A. (1979) The refractive index gradient in the crystalline cones of the eyes of an euphausiid crustacean. J. Exp. Biol. 82: 395–398.Google Scholar
  42. Land, M.F., Burton, F.A. & Meyer-Rochow, V.B. (1979) The optical geometry of euphausiid eyes. J. Comp. Physiol. 130: 49–62.Google Scholar
  43. Levi-Setti, R., Park, D.A. & Winston, R. (1975) The corneal cones of Limulus as optimised light concentrators. Nature (Lond.) 253: 115–116.CrossRefGoogle Scholar
  44. Lüders, L. (1909) Gigantocypris agassizii. Z. wiss. Zool. 92: 103–158.Google Scholar
  45. Martin, F.G. & Mote, M.I. (1982) Color receptors in marine crustaceans: A second spectral class of retinular cell in the compound eyes of Callinectes and Carcinus. J. Comp. Physiol. 145: 549–554.Google Scholar
  46. Meyer-Rochow, V.B. (1978) The eyes of mesopelagic crustaceans. II. Streetsia challengeri ( Amphipoda ). Cell Tissue Res. 186: 337–349.Google Scholar
  47. Nässei, D.R. & Waterman, T.H. (1979) Massive diurnally modulated photoreceptor membrane turnover in crab light and dark adaptation. J. Comp. Physiol. 131: 205–216.Google Scholar
  48. Nilsson, D.-E. & Nilsson, H.L. (1981) A crustacean compound eye adapted to low light intensities (Isopoda). J. Comp. Physiol. 143: 503–510.Google Scholar
  49. Nilsson, D.-E. & Odselius, R. (1981) A new mechanism for light-dark adaptation in the Artemia compound eye ( Anostraca, Crustacea). J. Comp. Physiol. 143: 389–399.Google Scholar
  50. Pumphrey, R.J. (1961) Concerning vision. In: The Cell and the Organism. Ed. J.A. Ramsay & V.B. Wigglesworth. Cambridge University Press, p. 193–208.Google Scholar
  51. Sandeman, D.C. (1978) Regionalization in the eye of the crab Leptograpsus variegatus: eye movements evoked by a target moving in different parts of the visual field. J. Comp. Physiol. 123: 299–306.Google Scholar
  52. Schönenberger, N. (1977) The fine structure of the compound eye of Squilla mantis ( Crustacea, Stomatopoda). Cell Tissue Res. 176: 205–233.Google Scholar
  53. Stavenga, D.G. (1979) Pseudopupils of compound eyes. In: Handbook of Sensory Physiology. Vol. VII/6A. Ed. H. Autrum. Berlin, Springer, p. 357–439.Google Scholar
  54. Stowe, S. (1980) Spectral sensitivity and retinal pigment movement in the crab Leptograpsus variegatus (Fabricius). J. Exp. Biol. 87: 73–99.Google Scholar
  55. Vaissière, R. (1961) Morphologie et histologie comparées des yeux descrustacés copépodes. Arch. Zool. Exp. Gén. 100: 1–125.Google Scholar
  56. Verger-Bocquet, M. (1983) Photoreception et vision chez les annelides (This volume).Google Scholar
  57. Vogt, K. (1975) Zur Optik des Flusskrebsauges. Z. Naturforsch. 30c: 691.Google Scholar
  58. Vogt, K. (1977) Ray path and reflection mechanism in crayfish eyes. Z. Naturforsch. 32c: 466–468.Google Scholar
  59. Vogt, K. (1980) Die Spiegeloptik des Flusskrebsauges. The optical system of the crayfish eye. J. Comp. Physiol. 135: 1–19.CrossRefGoogle Scholar
  60. Walcott, B. (1974) Unit studies on light adaptation in the retina of the crayfish, Cherax destructor. 3. Comp. Physiol. 94: 207–218.CrossRefGoogle Scholar
  61. Wald, G. (1968) Single and multiple visual systems in arthropods. J. Gen. Physiol. 51: 125–156.CrossRefGoogle Scholar
  62. Walls, G.L. (1942) The Vertebrate Eye and Its Adaptive Radiation. New York, Hafner, 785 pages.CrossRefGoogle Scholar
  63. Waterman, T.H. (1961) Light sensitivity and vision. In: The Physiology of Crustacea. Vol. II. Ed. T.H. Waterman. New York, Academic Press, p. 1–64.Google Scholar
  64. Waterman, T.H. (1981) Polarization sensitivity. In: Handbook of Sensory Physiology. Vol. VII/6B. Ed. H. Autrum. Berlin, Springer, p. 281 - 496.Google Scholar
  65. Wolken, J.J. & Florida, R.G. (1969) The eye structure and optical system of the crustacean copepod, Copilia. J. Cell Biol. 40: 279–285.CrossRefGoogle Scholar
  66. Yoshida, M., Takasu, N. & Tamotsu, S. (1983) Photoreception in echinoderms (This volume).Google Scholar
  67. Young, S. (1981) Behavioural correlates of photoreception in Daphnia. In: Sense Organs. Ed. M.S. Laverack & D.J. Cosens. Glasgow, Blackie, p. 49–63.Google Scholar
  68. Young, S. & Downing, A.C. (1976) The receptive fields of Daphnia ommatidia. J. Exp. Biol. 64: 185-202.Google Scholar
  69. Zyznar, E.J. & Nicol, J.A.C. (1971) Ocular reflecting pigments of some malacostraca. J. Exp. Mar. Biol. Ecol. 6: 235–248.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • M. F. Land
    • 1
  1. 1.School of Biological SciencesUniversity of SussexFalmer BrightonEngland

Personalised recommendations