Molecular Mechanisms of Photoinduced Chloroplast Movements

  • Gottfried Wagner
  • Franz Grolig
Part of the NATO ASI Series book series (NSSA, volume 89)


Cell metabolism requires that substrates, intermediates, co-factors, messengers, and enzymes must be able to move from one part of the cytoplasm to another. In small cells, such as bacteria or even most animal cells, diffusion is sufficient for small solutes to move over distances comparable to the size of the cell in fractions of a second. However, plant cells, because of their cell walls, vacuoles, and turgor, are able to grow very large. They are commonly more than 100 μm long, while some are few millimeters or even centimeters long. Diffusion is relatively ineffective over such distances, as the time needed for a molecule to reach its destination by diffusion alone depends on the square of the distance involved. It is not surprising, therefore, that large plant cells display an extensive cytoplasmic streaming that stirs their cytoplasm and moves material including chloroplasts around.


Actin Filament Cytoplasmic Streaming Myosin Molecule Chloroplast Movement Nonmuscle Myosin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1983, “Molecular Biology of the Cell,” Garland, New York.Google Scholar
  2. Altmüller, D., Grolig, F., and Wagner, G., 1984, Calcium sequestration and protein phosphorylation in the green alga Mougeotia sp., Eur. J. Cell Biol., Suppl., 5:3Google Scholar
  3. Blatt, M. R., Weisenseel, M. H., and Haupt, W., 1981, A light-dependent current associated with chloroplast aggregation in the alga Vaucheria sessilis, Planta, 152:513.CrossRefGoogle Scholar
  4. Blatt, M. R., Wessells, N. K., and Briggs, W. R., 1980, Actin and cortical fiber reticulation in the siphonaceous alga Vaucheria sessilis, Planta, 147:363.CrossRefGoogle Scholar
  5. Britz, S. J., 1979, Chloroplast and nuclear migration, in:“Encyclopedia of Plant Physiology,” New Ser., Vol. 7, W. Haupt and M. E. Feinleib, eds., Springer, Berlin, pp. 170–205.Google Scholar
  6. Carter, S. B., 1967, Effects of cytochalasins on mammalian cells, Nature, 213:261.PubMedCrossRefGoogle Scholar
  7. Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science, 207:19.PubMedCrossRefGoogle Scholar
  8. Cormier, M. J., Charbonneau, H., and Jarrett, H. W., 1981, Plant and fungal calmodulin: Ca2+-dependent regulation of plant NAD kinase, Cell Calcium, 2:313.PubMedCrossRefGoogle Scholar
  9. Corti, B., 1774, Osservationi microscopiche sulla tremelle e sulla circulazione del fluido in una pianata aquajuola, Lucca.Google Scholar
  10. Corti, B., 1776, Sur la circulation d’un fluide, de’couverti en diverses plantes, Rosier obs. sur la Physique, sur l’Histoire Nat., 8:232.Google Scholar
  11. Doughty, M. J., and Diehn, B., 1982, Photosensory transduction in the flagellated alga, Euglena gracilis, Biochim. Biophys. Acta, 682:32.CrossRefGoogle Scholar
  12. Dreizen, P., and Gershman, L. C., 1970, Molecular basis of muscular contraction: Myosin, Transact. NY Acad. Sci., Ser. 11, Vol. 32:170.Google Scholar
  13. Dreyer, E. M., and Weisenseel, M. H., 1979, Phytochrome-mediated uptake of calcium in Mougeotia cells, Planta, 146:31.CrossRefGoogle Scholar
  14. Filner, Ph., and Yadav, N. S., 1979, Role of microtubules in intracellular movements, in: “Encyclopedia of Plant Physiology,” New Ser., Vol. 7, W. Haupt and M. E. Feinleib, eds., Springer, Berlin, pp. 95–113.Google Scholar
  15. Goldman, R. D., 1975, The use of heavy meromyosin binding as an ultrastructural cytochemical method for localizing and determining the possible functions of actin-like microfilaments in nonmuscle cells, J. Histochem. Cytochem., 23:529.PubMedCrossRefGoogle Scholar
  16. Hale, II, C. C., and Roux, S. J., 1980, Photoreversible calcium fluxes induced by phytochrome in oat coleoptile cells, Plant Physiol., 65:658.PubMedCrossRefGoogle Scholar
  17. Haupt, W., 1970, Hellrot- und Dunkelrot-Wechselwirkungen bei der Chloroplastendrehung von Mougeotia, Wiss. Zeitschrif t Ernst-Moritz-Arndt-Universität Greifswald, 19:47.Google Scholar
  18. Haupt, W., 1982, Light-mediated movement of chloroplasts, Annu. Rev. Plant Physiol., 33:205.CrossRefGoogle Scholar
  19. Haupt, W., 1983, Movement of chloroplasts under the control of light, Prog. Phycol. Res., 2:228.Google Scholar
  20. Haupt, W., and Schöbohm, E., 1970, Light-oriented chloroplast movements, in: “Photobiology of Microorganisms,” P. Halldal, ed., Wiley-Interscience, London, pp. 283–307.Google Scholar
  21. Haupt, W., and Wagner, G., 1984, Chloroplast movement, in: “Membranes and Sensory Transduction,” G. Colombetti and F. Lenci, eds., Plenum, New York, pp. 331–375.Google Scholar
  22. Hope, A. B., and Walker, N. A., 1975, “The Physiology of Giant Algal Cells,” University Press, Cambridge.Google Scholar
  23. Huxley, H. E., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol., 7:281.CrossRefGoogle Scholar
  24. Isenberg, G., and Wohlfarth-Bottermann, K. E., 1976, Transformation of cytoplasmic actin. Importance for the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin, Cell. Tiss. Res., 173:495.CrossRefGoogle Scholar
  25. Ishikawa, H., Bishoff, R., and Holtzer, H., 1969, Formation of arrowhead complexes with heavy meromyosin in a variety of cell types, J. Cell Biol., 43:312.PubMedCrossRefGoogle Scholar
  26. Klein, K., 1981, Feinstrukturelle Untersuchungen zur Bewegung des Mougeotia-Chloroplasten, Ph.D. Thesis, Univ. Erlangen-Nürnberg.Google Scholar
  27. Klein, K., Wagner, G., and Blatt, M. R.., 1980, Heavy-meromyosin-decoration of microfilaments from Mougeotia protoplasts, Planta, 150:354.CrossRefGoogle Scholar
  28. Korn, E. D., 1982, Actin polymerization and its regulation by proteins from nonmuscle cells, Physiol. Rev., 62:672.PubMedGoogle Scholar
  29. Kuroda,,K., and Manabe, E., 1983, Microtubule-associated cytoplasmatic streaming in Caulerpa, Proc. Jpn. Acad., 59:131.CrossRefGoogle Scholar
  30. Marchant, H. J.,1976, Actin in the green algae Coleochaete and Mougeotia, Planta, 131:119.CrossRefGoogle Scholar
  31. Marmé, D., and Dieter, P., 1983, Role of Ca2+ and calmodulin in plants, in: “Calcium and Cell Function,” Vol. 4, W. Y. Cheung, ed., Academic Press, New York.Google Scholar
  32. Montavon, M., Horwitz, B. A., and Greppin, H., 1983, Far-red light-induced changes in intracellular potentials of spinach mesophyll cells, Plant Physiol., 73:671.PubMedCrossRefGoogle Scholar
  33. Nagai, R., and Hayama, T., 1979, Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells, J. Cell Sci., 36:121.PubMedGoogle Scholar
  34. Penningroth, S. M., Cheung A., Bonchard, Ph., Gagnon, C., and Bardin, C. W., 1982, Dynein ATPase is inhibited selectively in vitro by erythro-9-[3-2(hydroxynonyl)] adenine, Biochem. Biophys. Res. Commun., 104:234.PubMedCrossRefGoogle Scholar
  35. Rogler, S., 1980, Fluoreszenzmikroskopische Untersuchungen über die Calcium-Verteilung in Mougeotia, Diploma, Univ. Erlanger-Nürnberg.Google Scholar
  36. Rossbacher, R., 1980, Röntgenmikroanalytische Untersuchungen zur Kompartimentierung von-Calcium and anderer Ionen bei der Grünalge Mougeotiaspec., Diploma, Univ. Erlangen-Nürnberg.Google Scholar
  37. Rossbacher, R., Wagner, G., and Pallaghy, Ch. K., 1984, X-ray microanalysis of calcium in fixed and in shock-frozen hydrated green algal cells: Mougeotia, Spirogyra and Zygnema, Nucl. Instr. Meth. Phys. Res., B3:664.CrossRefGoogle Scholar
  38. Roux, S. J., 1984, Ca2+ and phytochrome action in plants, BioScience, 34:25.PubMedCrossRefGoogle Scholar
  39. Roux, S. J., McEntire, K., Slocum, R. D., Cedel, T. E., and Hale, C. C., 1981, Phytochrome induces photoreversible calcium fluxes in a purified mitochondrial fraction from oats, Proc. Natl. Acad. Sci. USA, 78:283.PubMedCrossRefGoogle Scholar
  40. Rüdiger, W., 1983, Chemistry of the phytochrome photoconversion, Phil. Trans. R. Soc. London, B303:377.Google Scholar
  41. Sabnis, D. D., and Jacobs, W. P., 1967, Microtubules in the Coenocytic marine alga, Caulerpa prolifera, J. Cell Sci., 2:465.PubMedGoogle Scholar
  42. Saunders, M. J., and Hepler, P. K., 1983, Calcium antagonists and calmodulin inhibitors block cytokinin-induced bud formation in Funaria, Developmental Biol., 99:41.CrossRefGoogle Scholar
  43. Schönbohm, E., 1973, Die lichtinduzierte Verankerung der Plastiden in cytoplasmatischem Wandbelag: Eine phytochromgesteuerte Kurzzeitreaktion, Ber. Deutsch. Bot. Ges., 83:423.Google Scholar
  44. Schönbohm, E., 1980, Phytochrome and non-phytochrome dependent blue light effects in intracellular movements in fresh water algae, in: “The Blue Light Syndrome,” H. Senger, ed., Springer, Berlin.Google Scholar
  45. Seitz, K., 1979, Cytoplasmic streaming and cyclosis of chloroplasts, in: “Encyclopedia of Plant Physiology,” New Ser., Vol. 7, W. Haupt and M. E. Feinleib, eds., Springer Berlin, pp. 150–169.Google Scholar
  46. Seitz, K., 1982, Chloroplast motion in response to light in aquatic vascular plants, in: “Studies on Aquatic Plants,” J. J. Symoens, S. S. Hooper, and P. Compère, eds., Roy. Soc. Belg., Brüssel.Google Scholar
  47. Serlin, B. S., and Roux, S. J.,1984, Modulation of chloroplast movement in the green alga Mougeotia by the Ca2+-ionophore, A 23187, and by calmodulin antagonists, Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  48. Song, P.-S., 1983, Protozoan and related photoreceptors: Molecular aspects, Annu. Rev. Biophys. Bioeng., 12:35.PubMedCrossRefGoogle Scholar
  49. Stockem, W., Weber, K., and Wehland, J., 1978, The influence of micro-injected phalloidin on locomotion, protoplasmic streaming and cytoplasmic organization in Amoeba proteus and Physarum polycephalum, Cytobiologie, 18:114.PubMedGoogle Scholar
  50. Wagner, G., 1979, Actomyosin as a basic mechanism of movement in animals and plants, in: “Encyclopedia of Plant Physiology,” New Ser., Vol. 7, W. Haupt and M. E. Feinleib, eds., Springer, Berlin, pp. 114–126.Google Scholar
  51. Wagner, G., and Bellini, E., 1976, Light-dependent fluxes and compartmentation of calcium in the green alga Mougeotia, Z. Pflanzenphysiol., 79:283.Google Scholar
  52. Wagner, G., and Klein, K., 1978, Differential effect of calcium on chloroplast movement in Mougerotia, Photochem. Photobiol., 27:137.CrossRefGoogle Scholar
  53. Wagner, G., and Klein, K., 1981, Mechanism of chloroplast movement in Mougeotia, Protoplasma190:169.CrossRefGoogle Scholar
  54. Wagner, G., and Rossbacher, R., 1980, X-ray microanalysis and chlorotetracycline staining of calcium vesicles in the green alga Mougeotia, Planta, 149:298.CrossRefGoogle Scholar
  55. Wagner, G., Valentin, P., Dieter, P., and Marmé, D., 1984, Identification of calmodulin in the green alga Mougeotia and its possible function in chloroplast reorientational movement, Planta, 162:62CrossRefGoogle Scholar
  56. Wehland, J., Osborn, M., and Weber, K., 1980, Phalloidin associates with microfilaments after microinjection into tissue culture cells, Eur. J. Cell. Biol., 21:188.PubMedGoogle Scholar
  57. Wieland, Th., 1977, Modifications of actins by phallotoxins, Naturwissenschaften, 64:303.PubMedCrossRefGoogle Scholar
  58. Williamson, R., 1975, Cytoplasmic streaming in Chara: A model activated by ATP and inhibited by cytochalasin BJ. Cell Sci., 17:655.PubMedGoogle Scholar
  59. Williamson, R. E., and Ashley, C. C., 1982, Free Ca2+ and cytoplasmic streaming in the alga Chara, Nature, 296:1.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Gottfried Wagner
    • 1
  • Franz Grolig
    • 1
  1. 1.Botanisches Institut IJustus-Liebig-UniversitätGiessenGermany

Personalised recommendations