Advertisement

Quantum Chaos as Basis for Statistical Mechanics

  • N. G. van Kampen
Part of the NATO ASI Series book series (NSSB, volume 120)

Abstract

Quantum chaos cannot be defined through correspondence with classical chaos, but only through its function as a basis for statistical behavior. The foundations of quantum statistics are outlined and the steps that rely on chaos are emphasized. Finally a simplified model of dissociation is given as an example.

Keywords

Quantum System Wave Packet Classical System Phase Cell Quantum Chaos 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Non-autonomous equations can of course be cast in this form by introducing one additional variable xn+1 = t. We shall not consider non-autonomous quantum systems, see e.g. T. Hogg and B.A. Huberman, Phys. Rev. Letters 48, 711 (1982); G. Casati and I. Guarneri, Phys. Rev. Letters 50, 640 (1983).Google Scholar
  2. 2).
    It should be absolutely continuous with respect to the Lebesgue measure in x space, and finite on each energy surface. The damped harmonic oscillator can be cast in Hamilton form, with a conserved quantity (not the usual energy of course) and a conserved measure, which however is not finite.Google Scholar
  3. 3).
    Some of the numerous surveys of classical chaos are: J. Ford, in: Fundamental Problems in Statistical Mechanics 3(E.G.D. Cohen ed., North-Holland, Amsterdam 1975) and R.H.G. Helleman, in: idem 5(1980).Google Scholar
  4. 4).
    See the reviews by S.A. Rice in: Photoselective ChemistryI (= Adv. Chem. Phys. 47; J. Jortner et al. eds., Wiley-Inter-science, New York 1981), and by D.W. Noid, M.L. Koszykowski, and R. A. Marcus, Annual Review of Physical Chemistry 32, 267 (1981).Google Scholar
  5. 5).
    W. Heisenberg, Die physikalischen Prinzipien der Quantentheorie(Hirzel, Leipzig 1930) p. 78; R.T. Prosser, J. Mathem. Phys. 24, 548 (1983).Google Scholar
  6. 6).
    N. Bohr, Collected Works III (North-Holland, Amsterdam 1976) p. 576; A. Sommerfeld, Atombau und Spektrallinien (4. Aufl., Vieweg, Braunschweig 1924) ch. 5.Google Scholar
  7. 7).
    The principal tool for investigating this limit is the WKB method, see e.g. M.V. Berry and K.E. Mount, Reports on Progress in Physics 35, 315 (1972); M.V. Berry and M. Tabor, Proc. Roy. Soc. Lond. A346, 101 (1976); M. Tabor, Physica D6, 195 (1983); M. Gutzwiller, Physica D5, 183 (1982).Google Scholar
  8. 8).
    Summarized in K.K. Lehmann, G.J. Scherer, and W. Klempener, J. Chem. Phys. 77, 2853 (1982).ADSCrossRefGoogle Scholar
  9. 9).
    For a cubic centimeter of hydrogen at 1 atmosphere the number of levels in an energy range corresponding to one microdegree is roughly 101020; hence also T.Google Scholar
  10. 10).
    This is already clear for a single particle in a rectangular box: if one lists the eigenstates according to increasing values of \( {E_\ell }mn = ({\hbar ^2}{\pi ^2}/2\mu )({\ell ^2}/{a^2} + {m^2}/{b^2} + {n^2}/{c^2})\) one sees that the direction of the momentum varies wildly. Of course in this soluble case they can be disentangled and the spectrum would be called ‘regular’ by I.C. Percival, in: Adv. Chem. Phys. 36, 1 (1977).Google Scholar
  11. 11).
    J. V. Neumann, Z. Phys. 57, 30 (1929); Mathematische Grundlagen der Quantenmechanik (Springer, Berlin 1932) p. 212 ff.ADSzbMATHCrossRefGoogle Scholar
  12. 12).
    N.G. van Kampen, Physica 20, 603 (1954); Fortschritte der Physik 4, 405 (1956); Fundamental Problems in Statistical Mechanics(E.G.D. Cohen, ed., North-Holland, Amsterdam 1962 ).MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13).
    P. Bocchieri and A. Loinger, Phys. Rev. 114, 948 (1959); G.M. Prosperi and A. Scotti, J. Mathem. Phys. 1, 218 (1960).MathSciNetADSCrossRefGoogle Scholar
  14. 14).
    R. Jancel, Les fondements de la mecanique statistique classique et quantique(Gauthier-Villars, Paris 1963); I.E. Farquhar, Ergodic Theory in Statistical Mechanics( Interscience, London 1964 ).Google Scholar
  15. 15).
    E.P. Wigner, J. Chem. Phys. 22, 1912 (1954).ADSGoogle Scholar
  16. 16).
    The normalization is for large L; the next approximation replaces L by L+n’(kn). See H.A. Kramers, Quantum Mechanics (North-Holland, Amsterdam 1957) p. 306,Google Scholar
  17. 17).
    J.M. Blatt and V.F. Weisskopf, Theoretical Nuclear Physics( Wiley, New York 1952 ) p. 382.zbMATHGoogle Scholar
  18. 18).
    This is the width in the k-scale; those in the scales of K and E differ by trivial factors, which we ignore in the discussion.Google Scholar
  19. 19).
    Perhaps not so fast as to be convincing, but that could be remedied by taking for A a smoothed version of the step function ?.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • N. G. van Kampen
    • 1
  1. 1.Institute for Theoretical Physics of the University at UtrechtUtrechtThe Netherlands

Personalised recommendations