Thermodynamic Properties of Neon for Temperatures from the Triple Point to 700 K at Pressures to 700 MPa

  • R. Katti
  • R. T Jacobsen
  • R. B. Stewart
  • M. Jahangiri
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 31)

Abstract

The published experimental data on the thermodynamic properties of neon have been used as the basis for a new thermodynamic property formulation for neon. The new correlation uses a fundamental equation (equation of state) explicit in Helmholtz energy, which provides for the calculation of derived thermodynamic properties by differentiation. The fundamental equation for neon is a subset of a larger comprehensive function which has also been used in developing thermodynamic property formulations for other fluids of cryogenic interest including oxygen, nitrogen, argon, and ethylene. In addition, new equations for the vapor pressure, saturated liquid density, and saturated vapor density are presented. The formulation presented here may be used to calculate pressure, density, temperature, enthalpy, entropy, internal energy, isochoric and isobaric heat capacities, and velocity of sound for neon. Summary comparisons of properties calculated with the new formulation for neon with selected experimental data are included to verify the accuracy of the fundamental equation for calculation of thermodynamic properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crommelin, C. A., Isothermals of monatomic substances and their binary mixtures. XX. Isothermals of neon from +20 C to -217 C, Communs. Phys. Lab Univ. Leiden, No. 154a: 108–117 (1918).Google Scholar
  2. 2.
    Gibbons, R. M., The equation of state of neon between 27 and 70 K, Cryogenics 9: 251–260 (Aug. 1969).CrossRefGoogle Scholar
  3. 3.
    Gladun, C., Some thermodynamic investigations into liquid neon isotope mixtures, Cryogenics 78–80 (Apr. 1967).Google Scholar
  4. 4.
    Holborn, L. and Otto, J., Uber die isothermen einiger gase zwischen +400 und − 183, Z. Physik 33: 1–11.Google Scholar
  5. 5.
    Lippold, H., Isothermal compressibility and density of liquid argon and neon up to pressures of 1000 Kg/cm2, Cryogenics 9 (2): 112 - 114 (1969).CrossRefGoogle Scholar
  6. 6.
    Maslennikova, V. YA., Egorov, A. N. and Tsiklis, D. S., Molar volumes and thermodynamic properties of neon at temperatures 25-150 C and pressures up to 7 Kbar, Sov. Phys. Dokl. 21 (8): 440–441 (Aug. 1976).Google Scholar
  7. 7.
    Michels, A. and Gibson, R. O., Isotherme times sugne dei höheren drucken11, Ann. Physik, 87: 850–876 (1982).Google Scholar
  8. 8.
    Michels, A., Wassenaar, T. and Louwerse, P., Isotherms of neon at temperatures between 0 C and 150 C and at densities up to 1100 amagat (pressures up to 2900 atmospheres), Physica 26: 539–543 (1960).CrossRefGoogle Scholar
  9. 9.
    Onosovskii, E. V., Investigation of compressibility of neon in the near-critical region, in “Thermophysical Properties of Matter and Substances,” 3, V. A. Rabinovich, ed., GS SSD, Moscow (1971), English Translation for the U.S. NBS Published by Amerind Publishing Co., New Delhi (1975), pp. 29–33.Google Scholar
  10. 10.
    Onosovskii, E. V. and Moroz, A. I., in “Thermophysical Properties of Matter and Substances,” 2, V. A. Rabinovich, ed., State Standard and Ref. Data Services, Moscow (1970).Google Scholar
  11. 11.
    Rabinovich, V. A., Tokina, L. A. and Berezin, V. M., Experimental determination of the compressibility of neon and argon at 300 to 720K for pressures up to 500 bar, Teplofizika Vysokikh Temperatur (USSR) 8(4):745–749 (July–Aug. 1970).Google Scholar
  12. 12.
    Scott, L. R., Density measurements for neon at low temperatures, Ph.D. Thesis, Michigan Univ., Ann Arbor (1967).Google Scholar
  13. 13.
    Streett, W. B., Pressure-volume-temperature data for neon from 80-130 K and pressures to 2000 atmospheres, J. Chem. Engr. Data 16 (3): 289–292 (1971).Google Scholar
  14. 14.
    Sullivan, J. A. and Sonntag, R. E., P-v-T behavior of neon at temperatures from 70 to 120 K and pressures to 300 Atm, in: “Advances in Cryogenic Engr.,” Vol. 12, (Proc. 1966 Cryogenic Engr. Conf.) Plenum Press, New York (1967), pp. 706–713CrossRefGoogle Scholar
  15. 15.
    Fleury, P. A. and Boon, J. P., Brillouin scattering in simple liquids: argon and neon, Phys. Rev., 186 (1): 244–254 (Oct. 1969).CrossRefGoogle Scholar
  16. 16.
    Gusewell, D., Schmeissner, F. and Schmid, J., Density and sound velocity of saturated liquid neon-hydrogen and neon-deuterium mixtures between 25 and 31 K, Cryogenics 10: 150–154 (1970).CrossRefGoogle Scholar
  17. 17.
    Larson, E. V., Naugle, D. G. and Adair, T. W. III., Ultrasonic velocity and attenuation in liquid neon, J. Chem. Phys. 54 (6): 2429–2436 (Mar. 1971).CrossRefGoogle Scholar
  18. 18.
    Naugle, D. H., Properties of liquid neon derived from sound velocity measurements, J. Chem. Phys. 56 (11): 5730–5732 (June 1972).CrossRefGoogle Scholar
  19. 19.
    Keesom, W. H. and Van Lammeren, J. A., Measurements on the velocity of sound in neon gas, Physica, 1: 1161–1170 (1934).CrossRefGoogle Scholar
  20. 20.
    Pashkov, V. V. and Konovodchenko, E. V., Ultrasonic velocity in liquid neon, Sov. J. Low Temp. Phys. 4 (5): 277–280 (May 1978).Google Scholar
  21. 21.
    Pitaevskaya, L. L. and Bilevich, A. V., The velocity of sound in compressed neon, High Temperatures — High Pressures 5: 459–461 (1973).Google Scholar
  22. 22.
    Gladun, C., Spezifische warme bei konstantem volumen, temperatur, molvolumen and druck, Ph.D. Thesis, Univ. of Dresden, Private Communication (1980).Google Scholar
  23. 23.
    Wagner, W., Eine mathematisch statistische methode zum aufstellen thermodynamischer gleischungen-gezeight am beispiel der dampfdruckkurve reiner fluiden stoffe, VDI-X 3: 39 (1974).Google Scholar
  24. 24.
    de Reuck, K. M. and Armstrong, B., A method of correlation using a search procedure based on a stepwise least-squares technique, and its application to an equation of state for propylene”, Cryogenics 505–512 (Sept. 1979).Google Scholar
  25. 25.
    Schmidt and Wagner, W., A new form of the equation of state for pure substances and its application to oxygen, Fluid Phase Equilibria 19: 175–200 (1985).CrossRefGoogle Scholar
  26. 26.
    Katti, R., and Jacobsen, R. T, “Thermodynamic Properties of Neon in the Critical Region,” Center for Applied Thermodynamic Studies Report, ( Manuscript in Progress, Aug. 1985 ).Google Scholar
  27. 27.
    IUPAC, Atomic weight of the elements 1975, Pure and Appli. Chem. 47: 75–85 (1976).Google Scholar
  28. 28.
    CODATA Bulletin No. 10, December 1973.Google Scholar
  29. 29.
    Bigeleisen, J. and Roth, E., Vapor pressures of the neon isotopes, J. Chem. Physics, 35 (1): 68–77 (July 1961).CrossRefGoogle Scholar
  30. 30.
    Grilly, E. R., The vapour pressure of solid and liquid neon, Cryogenics 2 (4): 226–229 (1962).CrossRefGoogle Scholar
  31. 31.
    Ancsin, J., Vapour pressures and triple point of neon and the influence of impurities on these properties, Metrologia 14: 1–7 (1978).CrossRefGoogle Scholar
  32. 32.
    Mathias, E., Crommelin, C. A. and Kamerlingh Onnes, H., Le diameter rectiligue du neon, Communs. Phys. Lab. Univ. Leiden 162b: 14–20 (1923).Google Scholar
  33. 33.
    Streett, W. B., “An experimental study of the equation of state of liquid mixtures of neon + normal hydrogen, J. Chem. Thermodynamics 5: 311–323 (1973).Google Scholar
  34. 34.
    Kurilenok, K. V., Orlova, M. P., Medvedev, V. A. and Nikolskaya, N. B. Heat of vaporization and density of saturated neon vapor, in: “Thermophysical Properties of Matter and Substances,” 9, V. A. Rabinovich, ed., (1976), pp. 135–141.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • R. Katti
    • 1
  • R. T Jacobsen
    • 1
  • R. B. Stewart
    • 1
  • M. Jahangiri
    • 1
  1. 1.Center for Applied Thermodynamic Studies College of EngineeringUniversity of IdahoMoscowUSA

Personalised recommendations