Skip to main content

Structural Studies on Sclerotized Insect Cuticle

  • Chapter
Chitin in Nature and Technology

Abstract

The integument of insects in composed mainly of chitin and proteins 1,2. Maintenance of normal life functions requires that cuticular structures are sclerotized, either in smaller parts, such as mandibles, or in larger areas for the construction of the exoskeleton. Sclerotization of the insect cuticle actually results from the incorporation of diphenolic compounds into the outer parts of the integument. Due to the classical work of Karlson and his school 3,4, it is well established that N-acetyldopamine is an essential component of the sclerotization system in many insects. More recently, N-β-alanyldopamine has been discovered as another sclerotization agent 5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Neville, “Biology of the Arthropod Cuticle”, Springer Verlag, Berlin (1975).

    Google Scholar 

  2. R.H. Hackman, Chemistry of the Insect Cuticle, in: M. Rockstein, ed., “The Physiology of Insecta”, Vol. 6, p. 215, Academic Press, New York (1974).

    Google Scholar 

  3. P. Karlson and C.E. Sekeris, N-Acetyldopamine as Sclerotization Agent of the Insect Cuticle, Nature 195: 183 (1962).

    Article  CAS  Google Scholar 

  4. P. Karlson and C.E. Sekeris, Control of Tyrosine Metabolism and Cuticle Sclerotization by Ecdysone, in.: H.R. Hepburn, ed., “The Insect Integument”, p. 145, Elsevier, Amsterdam (1976).

    Google Scholar 

  5. T.L. Hopkins, T.D. Morgan, Y. Aso, and K.J. Kramer, N-0-Alanyldopamine: Major Role in Insect Cuticle Tanning, Science 217: 364 (1982).

    Article  PubMed  CAS  Google Scholar 

  6. S.O. Andersen, Biochemistry of Insect Cuticle, Ann. Rev. Entomol. 24: 29 (1979).

    Article  CAS  Google Scholar 

  7. P.C.J. Brunet, The Metabolism of Aromatic Amino Acids Concerned in the Crosslinking of Insect Cuticle, Insect Biochem. 10: 467 (1980).

    Article  CAS  Google Scholar 

  8. H. Lipke, M. Sugumaran, and W. Henzel, Mechanism of Sclerotization in Diptera, Advan. Insect Physiol. 17: 1 (1983).

    Article  CAS  Google Scholar 

  9. R.H. Hackman and M. Goldberg, Molecular Crosslinks in Cuticles, Insect Biochem. 7: 175 (1977).

    Article  CAS  Google Scholar 

  10. J.F.V. Vincent and J.E. Hillerton, The Tanning of Insect Cuticle: A Critical Review and a Revised Mechanism, J. Insect Physiol. 25: 653 (1978).

    Article  Google Scholar 

  11. M.G. Peter, Products of in vitro Oxidation of N-Acetyldopamine as Possible Components in the Sclerotization of Insect Cuticle, Insect Biochem. 10: 221 (1980).

    Article  CAS  Google Scholar 

  12. R. Lang, Chitinsynthese bei dem Flußkrebs Orconectes limosus: Aktivität der Phosphoglucosamin isomerase und Einbau von [U-l4c]-Glucose in Chitin, Z. Vergl. Physiol. 73: 305 (1971).

    Article  Google Scholar 

  13. M. Lunt and P.W. Kent, A Chitinase System from Carcinus maenas, Biochim. Biophys. Acta 44: 371 (1960).

    Article  PubMed  CAS  Google Scholar 

  14. A. Willig and R. Keller, Molting Hormone Content, Cuticle Growth and Gastrolith Growth in the Molt Cycle of the Crayfish, Orconectes limosus, J. Comp. Physiol. 86: 377 (1973).

    Article  CAS  Google Scholar 

  15. M.G. Peter, L. Grün and H. Förster, CP/MAS-13C-NMR Spectra of Sclero- tized Insect Cuticle and of Chitin, Angew. Chem. Int. Ed. Engl. 23: 638 (1984).

    Article  Google Scholar 

  16. L. Grün and M.G. Peter, Incorporation of Radiolabelled Tyrosine, N-Ace- tyldopamine, N-ß-Alanyldopamine, and the Arylphorin Manducin into the Sclerotized Cuticle of Tobacco Hornworm (Manduca sexta) Pupae, Z. Naturforsch. C 36: 1066 (1984).

    Google Scholar 

  17. L. Grün and M.G. Peter, Selective Crosslinking of-Tyrosine Rich Larval Serum Proteins and of Soluble Manduca sexta Cuticle Proteins by Nascent N-Acetyldopamine Quinone and N-ß-Alanydopamine Quinone, in: K. Scheller, ed., “The Larval Serum Proteins of Insects”, p. 102, Thieme Verlag, Stuttgart (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Peter, M.G., Kegel, G., Keller, R. (1986). Structural Studies on Sclerotized Insect Cuticle. In: Muzzarelli, R., Jeuniaux, C., Gooday, G.W. (eds) Chitin in Nature and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2167-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2167-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9277-7

  • Online ISBN: 978-1-4613-2167-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics