Chitosan and Other Polyamines: Antifungal Activity and Interaction with Biological Membranes

  • J. L. Leuba
  • P. Stossel

Abstract

The antifungal effect of chitin has been demonstrated in field experiments. A marked reduction of root-rot in beans and of vascular wilt in radishes, both caused by Fusarium spp., were observed subsequent to addition of chitin to soil (1). Chitin amendment suppressed total fungal population and stimulated lytic and antibiotic-producing microorganisms such as actinomycetes (2–4). The antifungal effect of chitin thus was indirect, via antagonistic soil microorganisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Mitchell and M. Alexander, Chitin and the biological control of Fusarium diseases, Plant Disease Rep. 45: 487 (1961).Google Scholar
  2. 2.
    R. Mitchell and M. Alexander, Microbiological processes associated with the use of chitin for biological control, Soil. Sci. Soc. Proc. 26: 556 (1962).CrossRefGoogle Scholar
  3. 3.
    R. Mitchell, Addition of fungal cell wall components to soil for biological disease control, Phytopathology 53: 1063 (1963).Google Scholar
  4. 4.
    Y. Henis, B. Sneh, and H. Katan, Effect of organic amendments on Rhyzoctonia and accompanying microflora in soil, Can. J. Microbiol. 13: 643 (1967).PubMedCrossRefGoogle Scholar
  5. 5.
    C. R. Allan and L. A. Hadwiger, The fungicidal effect of chitosan on fungi of varying cell wall composition, Exp. Mycol. 3: 285 (1979).CrossRefGoogle Scholar
  6. 6.
    P. Stössel and J. L. Leuba, Effect of chitosan, chitin and some amino-sugars on the growth of various soilborne phytopathogenic fungi, Phytopath. Z. 111: 82 (1984)CrossRefGoogle Scholar
  7. 7.
    H. Köhle, D. H. Young, and H. Kauss, Physiological changes in suspension-cultured soybean cells elicited by treatment with chitosan, Plant Sci. Lett. 33: 221 (1984).CrossRefGoogle Scholar
  8. 8.
    L. A. Hadwiger and J. M. Beckman, Chitosan as a component of pea-Fusarium solani interactions, Plant Physiol. 66: 205 (1980).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Walker-Simmons, L. A. Hadwiger, and C. A. Ryan, Chitosan and pectic polysaccharides both induce accumulation of the antifungal phyto-alexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves, Biochem. Biophys. Res. Commun. 110: 194 (1983).CrossRefGoogle Scholar
  10. 10.
    M. Walker-Simmons and C. A. Ryan, Proteinase inhibitor synthesis in tomato leaves. Induction by chitosan oligomers and chemically modified chitosan and chitin, Plant Physiol. 76: 787 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    D. H. Young, H. Köhle, and H. Kauss, Effect of chitosan on membrane permeability of suspension-cultured Glycine max and Phaseolus vulgaris cells, Plant Physiol. 70: 1449 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    D. H. Young and H. Kauss, Release of calcium from suspension-cultured Glyine max cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability, Plant Physiol. 73: 698 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    E. E. Evans and S. P. Kent, The use of basic polysaccharides in histochemistry and cytochemistry: IV. Precipitation and agglutination of biological materials by Aspergillus polysaccharide and deacetylated chitin, J. Histochem. Cytochem. 10: 24 (1962).CrossRefGoogle Scholar
  14. 14.
    L. A. Hadwiger and D. C. Loschke, Molecular communication in host-parasite interactions: hexosamine polymers (chitosan) as regulator compounds in race-specific and other interactions, Phytopathology 71: 756 (1981).CrossRefGoogle Scholar
  15. 15.
    L. A. Hadwiger, J. M. Beckman, and M. J. Adams, Localization of fungal components in the pea-Fusarium interaction detected immunochemically with anti-chitosan and anti-fungal cell wall antisera, Plant Physiol. 67: 170 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    D. F. Kendra and L. A. Hadwiger, Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum, Exp. Mycol, 8: 276 (1984).CrossRefGoogle Scholar
  17. 17.
    J. R. Rubini, M. A. Stahman, and A. F. Rasmussen, Agglutination of red cells by synthetic lysine polypeptides, Proc. Soc. Exp. Biol. Med. 76: 659 (1951).PubMedGoogle Scholar
  18. 18.
    A. Katchalsky, D. Danon, A. Nevo, and A. de Vries, Interaction of basicpolyelectrolytes with the red blood cell. II. Agglutination of red blood cells by polymeric bases, Biochim. Biophys. Acta 33: 120 (1959).PubMedCrossRefGoogle Scholar
  19. 19.
    Y. Lingappa and J. L. Lockwood, Chitin media for selective isolation and culture of actinomycetes, Phytopathology 52: 317 (1962).Google Scholar
  20. 20.
    R. A. A. Muzzarelli, Chitin, Pergamon Press, Oxford (1977).Google Scholar
  21. 21.
    H. J. Vogel, A convenient growth medium for Neurospora, Microb. Genet. Bull. 13: 42 (1956).Google Scholar
  22. 22.
    G. Defago, K. F. Memmen, and H. Kern, Influence de cholestérol et des saponines sur le pouvoir pathogene de Pythium paroecandrum, Phytopath. Z. 83: 167 (1975).CrossRefGoogle Scholar
  23. 23.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, Protein measurement with the folin phenol reagent, J. Biol. Chem. 193: 265 (1951).PubMedGoogle Scholar
  24. 24.
    L. A. Hadwiger, A. Jafri, S. von Broembsen, and R. Eddy, Mode of pisatin induction. Increased template activity and dye-binding capacity of chromatin isolated from polypeptide-treated pea pods, Plant Physiol. 53: 52 (1974).PubMedCrossRefGoogle Scholar
  25. 25.
    J. W. Park, K. H. Choi, and K. K. Park, Acid-base equilibria and related properties of chitosan, Bull. Korean Chem. Soc. 4: 68 (1983).Google Scholar
  26. 26.
    E. Katchalski, L. Bichowski-Slomnitzki, and B. E. Volcani, The action of some water-soluble poly-a-amino acids on bacteria, Bio chem. J. 55: 671 (1953).Google Scholar
  27. 27.
    S. M. Siegel and O. Daly, Regulation of betacyanin efflux from beet root by poly-L-lysine, Ca-ion atid other substances, Plant Physiol. 41: 1429 (1966).PubMedCrossRefGoogle Scholar
  28. 28.
    H. Kauss, H. Köhle, and W. Jeblick, Proteolytic activation and stimu lation by Ca2+ of glucan synthase from soybean cells, FEBS Lett. 158: 84 (1983).CrossRefGoogle Scholar
  29. 29.
    E. W. B. Ward, P. Stossel, and G. Lazarovits, Similarities between age-related and race-specific resistance of soybean hypocotyls to Phytophtora megasperma var. sojae, Phytopathology 71: 504 (1981).CrossRefGoogle Scholar
  30. 30.
    T. R. Green and C. A. Ryan, Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects, Science 175: 776 (1972).PubMedCrossRefGoogle Scholar
  31. 31.
    R. B. Pearce and J. P. Ride, Specificity of induction of the lignification response in wounded wheat leaves, Physiol. Plant Pathol. 16: 197 (1980).CrossRefGoogle Scholar
  32. 32.
    R. C. Nims, R. S. Halliwell, and D. W. Rosberg, Wound healing in cultured tobacco cells following microinjection, Protoplasma 64: 305 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • J. L. Leuba
    • 1
  • P. Stossel
    • 1
  1. 1.Nestlè Research DepartmentNestec LtdVeveySwitzerland

Personalised recommendations