Advertisement

Collective Properties of Biological Systems

Solitons and Coherent Electric Waves in a Quantum Field Theoretical Approach
  • Emilio Del Giudice
  • Silvia Doglia
  • Marziale Milani
  • Giuseppe Vitiello

Abstract

We present a dynamical scheme for biological systems. We use methods and techniques of quantum field theory since our analysis is at a microscopic molecular level. Davydov solitons on biomolecular chains and coherent electric dipole waves are described as collective dynamical modes. Electric polarization waves predicted by Fröhlich are identified with the Goldstone massless modes of the theory with spontaneous breakdown of the dipole-rotational symmetry. Self-organization, dissipativity, and stability of biological systems appear as observable manifestations of the microscopic quantum dynamics.

Keywords

Biological System Collective Property Goldstone Mode Massless Mode Nonlinear Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Fröhlich, “The Biological Effects of Microwaves and Related Questions,” Adv. Electron. Electron Phys. 53, 85–152 (1980); H. Fröhlich, “Long-Range Coherence in Biological Systems,” Riv. Nuovo Cimento 7, 399–418 (1977).CrossRefGoogle Scholar
  2. 2.
    A. S. Davydov, “Solitons in Molecular Systems,” Phys. Scr. 20, 387–394 (1979).CrossRefGoogle Scholar
  3. 3.
    A. S. Davydov, Biology and Quantum Mechanics, Pergamon, Oxford (1982).Google Scholar
  4. 4.
    E. Del Giudice, S. Doglia, M. Milani, and G. Vitiello, “Spontaneous Symmetry Breakdown and Boson Condensation in Biology,” Phys. Lett. A 95, 508–510 (1983); E. Del Giudice, S. Doglia, M. Milani, and G. Vitiello, “A Quantum Field Theoretical Approach to the Collective Behaviour of Biological Systems,” Nucl. Phys. B 251 [FS 13], 375–400 (1985).CrossRefGoogle Scholar
  5. 5.
    G. Vitiello, E. Del Giudice, S. Doglia, and M. Milani, “Boson Condensation in Biological Systems,” Report to the International Conference on Nonlinear Electrodynamics in Biological Systems, Lorna Linda, California, June 1983; E. Del Giudice, S. Doglia, M. Milani, and G. Vitiello, Solitons and Self-Organization in Biological Systems,” in Proceedings of the Second International Workshop on Nonlinear and Turbulent Processes, Kiev (USSR), October 1983, Gordon and Breach, in press.Google Scholar
  6. 6.
    J. Goldstone, “Field Theories with Superconductor Solutions,” Nuovo Cimento 19, 154–164 (1961); J. Goldstone, A. Salam, and S. Weinberg, “Broken Symmetries,” Phys. Rev. 127, 965–970 (1962).CrossRefGoogle Scholar
  7. 7.
    R. Paul, “Production of Coherent States in Biological Systems,” Phys. Lett. A 96, 263–268 (1983).CrossRefGoogle Scholar
  8. 8.
    I. Prigogine and G. Nicolis, Self-Organization in Non-equilibrium Systems, from Dissipative Structures to Order Through Fluctuations, Wiley, New York (1977).Google Scholar
  9. 9.
    S. Celaschi and S. Mascarenhas, Biophys. J. 20, 273–278 (1977).CrossRefGoogle Scholar
  10. 10.
    J. B. Hasted, H. M. Millany, and D. Rosen, J. Chem. Soc. Faraday Trans. 77, 2289–2297 (1981).CrossRefGoogle Scholar
  11. 11.
    S. Mascarenhas, personal communication (August 1982).Google Scholar
  12. 12.
    H. Matsumoto, M. Tachiki, and H. Umezawa, Thermo-field Dynamics and Condensed States, North-Holland, Amsterdam (1982).Google Scholar
  13. 13.
    H. Matsumoto, P. Sodano, and H. Umezawa, “Extended Objects in Quantum Field Theory and Soliton Solutions,” Phys. Rev. D 19, 511–516 (1979).CrossRefGoogle Scholar
  14. 14.
    L. Mercaldo, I. Rabuffo, and G. Vitiello, “Canonical Transformations in Quantum Field Theory and Solitons,” Nucl Phys. 188B, 193–204 (1981).CrossRefGoogle Scholar
  15. 15.
    H. Umezawa, “Dynamical Rearrangement of Symmetries,” Nuovo Cimento 40, 450–475 (1965); L. Leplae, R. N. Sen, and H. Umezawa, “Asymmetric Ground States in Invariant Many-Body Theories,” Nuovo Cimento 49B, 1–31 (1967). H. Umezawa, “Self-consistent Quantum Field Theory and Symmetry Breaking,” in Renormalization and Invariance in Quantum Field Theory ( E. R. Caianiello, ed.), Plenum Press, New York (1974), pp. 275–328.Google Scholar
  16. 16.
    A. S. Davydov and V. I. Kislukha, “Solitons in One-Dimensional Molecular Chains,” Sov. Phys. JETP 44, 571–575 (1976).Google Scholar
  17. 17.
    A. S. Davydov, “Energy Transfer Along α-Helical Proteins,” in Structure and Dynamics: Nucleic Acids and Proteins (F. Clementi and R. H. Sarma, eds.), New York (1983), pp. 377–387 Adenine.Google Scholar
  18. 18.
    A. S. Davydov, “Solitons in Molecular Systems,”Preprint, Kiev ITP-83-115E (September 1983).Google Scholar
  19. 19.
    E. Del Giudice, S. Doglia, and M. Milani, “A Collective Dynamics in Metabolically Active Cells, Phys. Scr. 26, 232–238 (1982).CrossRefGoogle Scholar
  20. 20.
    E. Del Giudice, S. Doglia, and M. Milani, “Self-focusing of Fröhlich Waves and Cytoskeleton Dynamics,” Phys. Lett. 90A, 104-106 (1982); E. Del Giudice, S. Doglia, and M. Milani, “Actin Polymerization in Cell Cytoplasm” in The Application of Laser Light Scattering to the Study of Biological Motion (J. C. Earnshaw and M. W. Steer, eds.), Plenum Press, New York (1983); pp. 493-497; E. Del Giudice, S. Doglia, and M. Milani, “Self-focusing and Ponderomotive Forces of Coherent Electric Waves: A Mechanism for Cytoskeleton Formation and Dynamics,” in Coherent Excitations of Biological Systems (H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 124–127; E. Del Giudice, S. Doglia, and M. Milani, “Order and Structures in Living Systems,” Report to the International Conference on Nonlinear Electrodynamics in Biological Systems, Lorna Linda, California (USA) June 1983.Google Scholar
  21. 21.
    H. Matsumoto, H. Umezawa, G. Vitiello, and J. K. Wyly, “Spontaneous Breakdown of a Non-Abelian Symmetry,” Phys. Rev. D 9, 2806–2813 (1974).CrossRefGoogle Scholar
  22. 22.
    M. N. Shah, H. Umezawa, and G. Vitiello, “Relation Among Spin Operators and Magnons,” Phys. Rev. B 10, 4724–4736 (1974).CrossRefGoogle Scholar
  23. 23.
    C. De Concini and G. Vitiello, “Spontaneous Breakdown of Symmetry and Group Contractions,” Nucl. Phys. 116B, 141–156 (1976). C. De Concini and G. Vitiello, “Relation Between Projective Geometry and Group Contraction in Spontaneously Broken Symmetries,” Phys. Lett. 70B, 355–357 (1977).CrossRefGoogle Scholar
  24. 24.
    F. J. Dyson, “General Theory of Spin Wave Interactions,” Phys. Rev. 102, 1217–1230 (1956).CrossRefGoogle Scholar
  25. 25.
    S. L. Adler, “Consistency Conditions on Strong Interaction Implied by a PCA Vector Current. I,” Phys. Rev. 137B, 1022–1033 (1965). S. L. Adler, “Consistency Conditions on Strong Interaction Implied by a PCA Vector Current. II,” Phys. Rev. 139B, 1638–1643 (1965).CrossRefGoogle Scholar
  26. 26.
    M. N. Shah and G. Vitiello, “Self-consistent formulation of itinerant Electron Ferromagnet,” Nuovo Cimento 30B, 21–42 (1975).CrossRefGoogle Scholar
  27. 27.
    A. S. Davydov and A. V. Zolotariuk, “Electrons and Excitons in Nonlinear Molecular Chains,” Phys. Scr. 28, 249–256 (1983).CrossRefGoogle Scholar
  28. 28.
    G. Careri, U. Buontempo, F. Carta, E. Gratton, and A. C. Scott, “Infrared Absorption in Acetanilide by Solitons,” Phys. Rev. Lett. 51, 304–307 (1983).CrossRefGoogle Scholar
  29. 29.
    N. A. Nevskaia and Yu. N. Chirgadze, “Infrared Spectra and Resonance Interactions of amide-I and amide-II vibrations of a-helix,” Biopolymers 15, 637–648 (1976).CrossRefGoogle Scholar
  30. 30.
    F. Drissler and R. M. MacFarlane, “Enhanced Anti-Stokes Raman Scattering from Living Cells of Chlorella Pyrenoidosa,” Phys. Lett. A69, 65–68 (1978); F. Drissler, “Discovery of Phase Transitions in Photosynthetic Systems,” 77A, 207–210 (1980).Google Scholar
  31. 31.
    E. Del Giudice, S. Doglia, and M. Milani, “Solitons in Biological Systems at Low Temperature,” Phys. Scr. 23, 307–312 (1981).CrossRefGoogle Scholar
  32. 32.
    A. C. Scott, “Dynamics of Davydov Solitons,” Phys. Rev. A 26, 578–593 (1982).CrossRefGoogle Scholar
  33. 33.
    S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A. Krumhanols, and S. Litwin, “Nature of the Open State in Long Polynucleotide Double Helices,” Proc. Natl. Acad. Sci. USA 77, 7222–7226 (1980).CrossRefGoogle Scholar
  34. 34.
    P. Jensen, M. V. Jaric, and K. H. Bennemann, “Soliton-like Processes during Right-Left Transition,” Phys. Lett. 95A, 204–208 (1983).CrossRefGoogle Scholar
  35. 35.
    P. Beaconsfield and E. Balanovski, “EM-induced B-DNA to A-DNA Transition: Signal Stimulating Conditions for DNA-Mediated Insulin Production and Cell Replication,” Phys. Lett. 100A, 172–174 (1984).CrossRefGoogle Scholar
  36. 36.
    S.C. Erfurth, E. J. Kier, and W. L. Peticolas, “Determination of the Backbone Structure of Nucleic Acids and Nucleic Acid Oligomers by Laser Raman Spectroscopy,” Proc. Natl. Acad. Sei. USA 69, 938–941 (1972).CrossRefGoogle Scholar
  37. 37.
    G. J. Thomas and K. A. Hartman, “Raman Studies of Nucleic Acids VIII. Estimation of RNA Secondary Structure from Raman Scattering by Phosphate-Group Vibrations,” Biochem. Biophys. Acta 312, 311–322 (1973).Google Scholar
  38. 38.
    R. Cooke and I. D. Kuntz, “The Properties of Water in Biological Systems,” Ann. Rev. Biophys. Bioeng. 3, 95–123 (1974).CrossRefGoogle Scholar
  39. 39.
    J. Clegg, “Intracellular Water, Metabolism and Cellular Architecture,” Collect. Phenom. 3, 289–312 (1981).Google Scholar
  40. 40.
    F. Franks, Water, A Comprehensive Treatise, Pergamon (1975).Google Scholar
  41. 41.
    N. D. Devyatkov, “Influence of Millimeter-Band Electromagnetic Radiation on Biological Objects,” Sov. Phys. Usp. 16, 568–569 (1974).CrossRefGoogle Scholar
  42. 42.
    S. J. Webb, “Nutrition and in Vivo Rotational Motion: A Microwave Study,” Int. J. Quantum Chem. Quantum Biol. Symp. No. 1, 245–251 (1974); S. J. Webb, “Genetic Continuity and Metabolic Regulation as Seen by the Effects of Various Microwave and Black Light Frequencies on these Phenomena,” Ann. N. Y. Acad. Sci. 247, 327–344 (1975).Google Scholar
  43. 43.
    W. Grundler, F. Keilmann, V. Putterlik, L. Santo, D. Strube, and I. Zimmermann, “Nonthermal Resonant Effects at 42-GH Microwaves on the Growth of Yeast Cultures,” in Coherent Excitations of Biological Systems ( H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 21–37.Google Scholar
  44. 44.
    F. Hillenkamp, “Interaction between Laser Radiation and Biological Systems,” in Lasers in Biology and Medicine ( E. F. Hillenkamp, R. Pratesi, and C. A. Sacchi, eds.), Plenum, New York (1979), pp. 37–68.Google Scholar
  45. 45.
    T. J. Karu, O. A. Tiphlova, V. S. Letokhov, and Y. V. Lobko, “Stimulation of E. Coli Growth by Laser and Incoherent Red Light,” Nuovo Cimento 2D, 1138–1149 (1983).CrossRefGoogle Scholar
  46. 46.
    H. Pohl, “Natural Oscillating Fields of Cells,” in Coherent Excitations in Biological Systems ( H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 199–210.Google Scholar
  47. 47.
    A. H. Japary-Asl and C. W. Smith, “Biological Dielectrics in Electric and Magnetic Fields,” in 1983 Annual Report Conference on Electrical Insulation and Dielectric Phenomena.Google Scholar
  48. 48.
    K. H. Li, F. A. Popp, W. Nagl, and H. Klima, “Indications of Optical Coherence in Biological Systems and Its Possible Significance,” in Coherent Excitations in Biological Systems ( H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 117–122.Google Scholar
  49. 49.
    S. J. Webb, “Laser Raman Spectroscopy of Living Cells,” Phys. Rep. 60, 201–224 (1980).CrossRefGoogle Scholar
  50. 50.
    E. Del Giudice, S. Doglia, M. Milani, and M. P. Fontana, “Raman Spectroscopy and Order in Biological Systems,” Cell Biophys. 6, 117–129 (1984).Google Scholar
  51. 51.
    E. Del Giudice, S. Doglia, M. Milani, and S. J. Webb, “A Time Consistent Feature as Seen in the Raman spectra of Metabolically Active Cells,” Phys. Lett. 91A, 257–260 (1982).CrossRefGoogle Scholar
  52. 52.
    E. Del Giudice, S. Doglia, M. Milani, and S. J. Webb, “In vivo Ordered Structures as Seen by Laser Raman Spectroscopy,” in Proceedings of the 2nd International Seminar on the Living State, Bhopal (India) (1983).Google Scholar
  53. 53.
    S. Rowlands, L. S. Sewchand, and E. G. Enns, “Further Evidence for a Fröhlich Interaction of Erythrocytes,” Phys. Lett. 87A, 256–260 (1982); S. Rowlands, “Coherent Excitations in Blood,” in Coherent Excitations in Biological System ( H. Fröhlich and F. Kremer, eds.), Springer, Berlin (1983), pp. 145–161.Google Scholar
  54. 54.
    R. Paul, R. Chatterjee, J. A. Tuszynski, and O. G. Fritz, “Theory of Long-Range Coherence in Biological Systems. I. The Anomalous Behaviour of Human Erythrocytes,” J. Theor. Biol. 104, 169–185 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Emilio Del Giudice
    • 1
    • 2
  • Silvia Doglia
    • 1
    • 3
  • Marziale Milani
    • 1
    • 2
  • Giuseppe Vitiello
    • 4
    • 5
  1. 1.Dipartimento di Fisica dell’UniversitàMilanoItaly
  2. 2.Istituto Nazionale di Fisica NucleareSez. di MilanoItaly
  3. 3.Gruppo Nazionale di Struttura della Materia del C.N.R.MilanoItaly
  4. 4.Dipartimento di Fisica dell’UniversitàSalernoItaly
  5. 5.Istituto Nazionale di Fisica NucleareSez. di NapoliItaly

Personalised recommendations