Advertisement

A novel leukocyte chemotactic and activating cytokine, interleukin-8 (IL-8)

  • Naofumi Mukaida
  • Akihisa Harada
  • Kouji Matsushima
Chapter
Part of the Cancer Treatment and Research book series (CTAR, volume 80)

Abstract

Inflammation occurs as a host defensive reaction to tissue injuries caused by various inciting stimuli and is inevitably associated with leukocyte infiltration into a site of inflammation. Limited types of leukocytes infiltrate, depending upon the type, degree, and timing of tissue injuries [1]. Several leukocyte chemotactic factors such as C5a, leukotriene B4, and bacteria-derived formyl peptide have been long described [2]. However, these factors can induce Chemotaxis of any type of leukocytes, thus suggesting the existence of a cell-type-specific leukocyte chemotactic factor(s) in addition to these nonspecific ones.

Keywords

Human Neutrophil Neutrophil Infiltration Adult Respiratory Distress Syndrome Chemotactic Activity T98G Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ryan GB. The origin and sequence of the cells found in the acute inflammatory response. J Exp Biol Med Sci 45:149–159, 1967.Google Scholar
  2. 2.
    Vergehese MW, Synderman RS. Role of chemotactic and inflammatory cytokines. In: JJ Oppenheim, E Shevach, eds. Textbook of Immunophysiology. New York: Oxford University Press, 1989, pp 274–305.Google Scholar
  3. 3.
    Luger TA, Charon JA, Colot M, Micksche M, Oppenheim JJ. Chemotactic properties of partially purified human epidermal cell-derived thymocyte-activating factor (ETAF) for polymorphonuclear and mononuclear cells. J Immunol 131:816–820, 1983.PubMedGoogle Scholar
  4. 4.
    Wang JM, Bersani L, Mantovani A. Tumor necrosis factor is chemotactic for monocytes and polymorphonuclear leukocytes. J Immunol 138:1469–1474, 1987.Google Scholar
  5. 5.
    Yoshimura T, Matsushima K, Oppenheim JJ, Leonard EJ. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: Partial characterization and separation from interleukin 1 (IL 1). J Immunol 139:788–793, 1987.PubMedGoogle Scholar
  6. 6.
    Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, Leonard EJ. Purification of a human monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines. Proc Natl Acad Sci USA 84:9233–9237, 1987.PubMedGoogle Scholar
  7. 7.
    Matsushima K, Morishita K, Yoshimura T, Lavu S, Kobayashi Y, Lew W, Appella E, Kung HF, Leonard EJ, Oppenheim JJ. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med 167:1883–1893, 1988.PubMedGoogle Scholar
  8. 8.
    Schmidt J, Weismann C. Induction of mRNA for a serine protease and a ß-thromboglo-bulin-like protein in mitogen-stimulated human leukocytes. J Immunol 139:250–256, 1987.Google Scholar
  9. 9.
    Walz A, Peveri P, Aschauer H, Baggiolini M. Purification and amino acid sequencing of NAF, a novel neutrophil-activating factor produced by monocytes. Biochem Biophys Res Commun 149:755–761, 1987.PubMedGoogle Scholar
  10. 10.
    Schröder JM, Mrowietz U, Morita E, Christophers E. Purification and partial biochemical characterization of a humann monocyte-derived, neutrophil-activating peptide that lacks interleukin 1 activity. J Immunol 139:3474–3483, 1987.PubMedGoogle Scholar
  11. 11.
    Van Damme J, Van Beeumen J, Opdenakker G, Billiau A. A novel NH2-terminal sequnece-characterized human monokine possessing neutrophil chemotactic, skin-reactive, and granulocytosis-promoting activity. J Exp Med 167:1364–1376, 1988.PubMedGoogle Scholar
  12. 12.
    Larsen CG, Anderson AO, Appella E, Oppenheim JJ, Matsushima K. Neutrophil activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 243:1464–1466, 1989.PubMedGoogle Scholar
  13. 13.
    Leonard EJ, Skeel A, Yoshimura T, Noer K, Kutbirt S, Van Epps D. Leukocyte specificity and binding of human neutrophil attractant/activating protein-1. J Immunol 144:1323–1330, 1990.PubMedGoogle Scholar
  14. 14.
    Oppenheim JJ, Zachariae COC, Mukaida N, Matsushima K. Properties of the novel proinflamamtory supergene ‘intercrine’ cytokine family. Annu Rev Immunol 9:617–648, 1991.PubMedGoogle Scholar
  15. 15.
    Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines — CXC and CC chemokines. Adv Immunol 55:97–179, 1994.PubMedGoogle Scholar
  16. 16.
    Mukaida N, Harada A, Yasumoto K, Matsushima K. Properties of pro-inflammatory cell type-specific leukocyte chemotactic cytokines, interleukin 8 (IL-8) and monocyte chemotactic and activating factor (MCAF). Microbiol Immunol 36:773–789, 1992.PubMedGoogle Scholar
  17. 17.
    Shall TJ. Biology of the RANTES/SIS cytokine family. Cytokine 3:165–183, 1991.Google Scholar
  18. 18.
    Yoshimura T, Robinson EA, Appella E, Matsushima K, Showalter SD, Skeel A, Leonard EJ. Three forms of monocyte-derived neutrophil chemotactic factor (MDNCF) distinguished by different lengths of the amino-terminal sequence. Mol Immunol 26:87–93, 1989.PubMedGoogle Scholar
  19. 19.
    Hébert CA, Luscinskas FW, Kieley J-M, Luis EA, Darbonne WC, Bennet GL, Liu CC, Obin MS, Gimbrone MR Jr, Baker JB. Endothelial and leukocyte forms of interleukin-8. Conversion by thrombin and interactions with neutrophils. J Immunol 145:3033–3040, 1990.PubMedGoogle Scholar
  20. 20.
    Ko Y-C, Mukaida N, Ishiyama S, Tokue A, Kawai T, Matsushima K, Kasahara T. Elevated interleukin-8 levels in the urine of patients with urinary tract infections. Infect Immun 61:1307–1413, 1993.PubMedGoogle Scholar
  21. 21.
    Clore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM. Three-dimensional structure of interleukin 8 in solution. Biochemistry 29:1689–1696, 1990.PubMedGoogle Scholar
  22. 22.
    Baldwin ET, Franklin KA, Appella E, Yamada M, Matsushima K, Wlodawer A, Weber IT. Crytalization of human interleukin-8. A protein chemotactic for neutrophils and T lymphocytes. J Biol Chem 265:6851–6853, 1990.PubMedGoogle Scholar
  23. 23.
    Baldwin ET, Weber IT, St. Charles R, Xuan J-C, Appella E, Yamada M, Matsushima K, Edwards BFP, Clore GM, Gronenborn AM, Wlodawer A. Crystal structure of interleukin 8: Symbiosis of NMR and crystallography. Proc Natl Acad Sci USA 88:502–506, 1991.PubMedGoogle Scholar
  24. 24.
    St. Charles R, Walz DA, Edwards BF. The three-dimensional structure of bovine platelet factor 4 at 3.0-Å resolution. J Biol Chem 264:2092–2099, 1989.PubMedGoogle Scholar
  25. 25.
    Rajarathnam K, Sykes BD, Kay CM, Dewald B, Geiser T, Baggiolini M, Clark-Lewis I. Neutrophil activation by monomeric interleukin-8. Science 264:90–93.Google Scholar
  26. 26.
    Lindley IJD, Aschauer H, Lam C, Basemer J, Rot A. In vitro and in vivo activity of mutagenized versions of recombinant human NAP-1/IL-8 and identification of functionally important domains. In: JJ Oppenheim, MC Kluger, CA Dinarello, eds. Molecular Cellular Biology of Cytokine. New York: Wiley-Liss, 1990, pp 345–350.Google Scholar
  27. 27.
    Hebert CA, Vitangcol RV, Baker JT. Scanning mutagenesis of interleukin-8 identifies a cluster of residues required for receptor binding. J Biol Chem 266:18989–18994, 1991.PubMedGoogle Scholar
  28. 28.
    Clark-Lewis I, Dewald B, Geiser T, Moser B, Baggiolini M. Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci USA 90:3574–3577, 1993.Google Scholar
  29. 29.
    Samanta AK, Oppenheim JJ, Matsushima K. Identification of a specific receptor for monocyte-derived neutrophil chemotactic factor (MDNCF) on human neutrophils. J Exp Med 169:1185–1189, 1989.PubMedGoogle Scholar
  30. 30.
    Grob PM, David E, Warren TC, DeLeon RP, Farina PR, Homon CA. Characterization of a specific receptor for monocyte-derived neutrophil chemotactic factor/interleukin-8. J Biol Chem 265:8311–8316, 1990.PubMedGoogle Scholar
  31. 31.
    Basemer J, Hujber A, Kuhn B. Specific binding, internalization, and degradation of human neutrophil activating factor by human polymorphonuclear leukocytes. J Biol Chem 264:17409–17415, 1989.Google Scholar
  32. 32.
    Moser B, Schumacher C, von Tscharner V, Clark-Lewis I, Baggiolini M. Neutrophil-activating peptide 2 and gro/melanoma growth-stimulatory activity interact with neutrophil-activating peptide 1/interluekin 8 receptors on human neutrophils. J Biol Chem 266: 10666–10671, 1991.PubMedGoogle Scholar
  33. 33.
    Kimata H, Yoshida A, Ishioka C, Lindley I, Mikawa H. Interleukin 8 (IL-8) selectively inhibits immunogobulin E production induced by IL-4 in human B cells. J Exp Med 176:1227–1231, 1992.Google Scholar
  34. 34.
    Wang JM, Taraboletti G, Matsushima K, Van Damme J, Mantovani A. Induction of haptotactic migration of melanoma cells by neutrophil activating protein/interleukin-8. Biochem Biophys Res Commun 169:165–170, 1990.PubMedGoogle Scholar
  35. 35.
    Unemori EN, Amento EP, Bauer EA, Horuk R. Melanoma growth-stimulatory activity/ GRO decreases collagen expression by human fibroblasts: Regulation by C-X-C but not C-C cytokines. J Biol Chem 268:1338–1342, 1993.PubMedGoogle Scholar
  36. 36.
    Murayama T, Kuno K, Jisaki F, Sakamuro D, Obuchi M, Furukawa T, Mukaida N, Matsushima K. Enhancement of human cytomglaovirus replication in a human lung fibroblast cell line by interleukin 8. J Virol 68:7582–7585, 1994.PubMedGoogle Scholar
  37. 37.
    Samanta AK, Oppenheim JJ, Matsushima K. Interleukin 8 (monocyte-derived neutrophil chemotactic factor) dynamically regulates its own receptor expression on human neutrophils. J Biol Chem 265:8311–8316, 1990.Google Scholar
  38. 38.
    Holmes WE, Lee J, Kuang W-J, Rice CG, Wood WI. Structure and functional expression of a human interleukin-8 receptor. Science 253:1278–1280, 1991.PubMedGoogle Scholar
  39. 39.
    Murphy PH, Tiffany HE. Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science 253:1280–1283, 1991.PubMedGoogle Scholar
  40. 40.
    Boulay F, Tardif M, Brouchon L, Vignais P. Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem Biophys Res Commun 168:1103–1109, 1990.PubMedGoogle Scholar
  41. 41.
    Gerard NP, Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature 349:614–617, 1991.PubMedGoogle Scholar
  42. 42.
    Honda Z-I, Nakamura M, Miki I, Minami M, Watanabe T, Seyama Y, Okado H, Toh H, Ito K, Miyamoto T, Shimizu T. Cloning by functional expression of platelet-activating factor receptor from guinea pig lung. Nature 349:342–346, 1991.PubMedGoogle Scholar
  43. 43.
    Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, Wood WI. Characterization of two high affinity human interleukin-8 receptors. J Biol Chem 267:16283–16287, 1992.PubMedGoogle Scholar
  44. 44.
    Morris SW, Nelson N, Valentine NB, Shapiro DN, Look AT, Kozlosky CJ, Beckmann MP, Cerretti DP. Assignment of the genes encoding human interleukin-8 receptor types 1 and 2 and an interleukin-8 receptor pseudogene to chromosome 2q35, Genomics 14: 685–691, 1992.PubMedGoogle Scholar
  45. 45.
    LaRosa GJ, Thoma KM, Kaufmann ME, Mark R, White M, Taylor L, Gray G, Witt D, Navarro J. Amino terminus of the interleukin-8 receptor is a major determinant of receptor subtype specificity. J Biol Chem 267:25402–25406, 1992.PubMedGoogle Scholar
  46. 46.
    Hébert CA, Chuntharapai A, Smith M, Colby T, Kim J, Horuk R. Partial functional mapping of the human interleukin-8 type A receptor: Identification of a major ligand binding domain. J Biol Chem 268:18549–18553, 1993.PubMedGoogle Scholar
  47. 47.
    Sprenger H, Lloyd AR, Lautens LL, Bonner TI, Kelvin DJ. Structure, genomic organization, and expression of the human interleukin-8 receptor B gene. J Biol Chem 269: 11065–11072, 1004.Google Scholar
  48. 48.
    Neote K, Darbonne W, Ogez J, Horuk R, Schall TJ. Identification of a promiscuous inflammatory peptide receptor on the surface of red blood cells. J Biol Chem 268: 12247–12249, 1993.PubMedGoogle Scholar
  49. 49.
    Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH. A receptor for malarial parasite Plasmodium vivax: The erythrocyte chemokine receptor. Science 261:1182–1184, 1993.PubMedGoogle Scholar
  50. 50.
    Mukaida N, Hishinuma A, Zachariae COC, Oppenheim JJ, Matsushima K. Regulation of the human interleukin 8 gene expression and binding of several other members of intercrine family to receptors for IL 8. Adv Exp Med Biol 305:31–38, 1991.PubMedGoogle Scholar
  51. 51.
    Kasahara T, Mukaida N, Yamashita K, Yagisawa H, Akahoshi T, Matsushima K. Il-1 and TNF-a induction of IL-8 and monocyte chemotactic and activating factor (MCAF) mRNA expression in a human astrocytoma cell line. Immunology 74:60–67, 1991.PubMedGoogle Scholar
  52. 52.
    DeForge LE, Preston AM, Takeuchi E, Kenney J, Boxer LA, Remick DG. Regulation of interleukin 8 gene expression by oxidant stress. J Biol Chem 268:25568–25576, 1993.PubMedGoogle Scholar
  53. 53.
    Laudanna C, Constantin G, Baron P, Scarpini E, Scarlato G, Cabrini G, Dechecchi C, Rossi F, Cassatella MA, Berton G. Sulfatides trigger increase of cytosolic free calcium and enhanced expression of tumor necrosis factor-α and interleukin-8 mRNA in neutrophils: Evidence for a role of 1-selectin as a signaling molecule. J Biol Chem 269:4021–4026, 1994.PubMedGoogle Scholar
  54. 54.
    Mukaida N, Shiroo M, Matsushima K. Genomic structure of the human monocyte-derived neutrophil chemotactic factor IL-8. J Immunol 143:1366–1371, 1989.PubMedGoogle Scholar
  55. 55.
    Mukaida N, Morita M, Ishikawa Y, Rice N, Okamoto S-i, Kasahara T, Matsushima K. Novel mechanism of glucocorticoid-mediated gene repression. Nuclear factor-κB is target for glucocorticoid-mediated interleukin 8 gene repression. J Biol Chem 269:13289–13295, 1994.PubMedGoogle Scholar
  56. 56.
    Mukaida N, Mahé Y, Matsushima K. Cooperative interaction of nuclear factor-κB- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem 265:21128–21133, 1990.PubMedGoogle Scholar
  57. 57.
    Baeuerle PA. The inducible transcription activator NF-κB: Regulation by distinct protein subunits. Biochem Biophys Acta 1072:63–80, 1991.Google Scholar
  58. 58.
    Henkel T, Machleidt T, Alkalay I, Kronke M, Ben-Neriah Y, Baueuerle PA. Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κB. Nature 365:182–185, 1993.PubMedGoogle Scholar
  59. 59.
    Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S. Transcription factors NF-IL6 and NF-κB synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8. Proc Natl Acad Sci USA 90: 10193–101970, 1993.Google Scholar
  60. 60.
    Okamoto S-i, Mukaida N, Yasumoto K, Rice N, Ishikawa Y, Horiguchi H, Murakami S, Matsushima K. The interleukin-8 AP-1 and κB-like sites are genetic end targets of FK506-sensitive pathway accompanied by calcium mobilization. J Biol Chem 269:8582–8589, 1994.PubMedGoogle Scholar
  61. 61.
    Yasumoto K, Okamoto S-i, Mukaida N, Murakami S, Mai M, Matsushima K. Tumor necrosis factor a and interferon y synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-κB-like binding sites of the interleukin 8 gene. J Biol Chem 267:22506–22511, 1992.PubMedGoogle Scholar
  62. 62.
    Nakamura H, Yoshimura K, Jaffe HA, Crystal RG. Interleukin-8 gene expression in human bronchial epithelial cells. J Biol Chem 266:19611–19617, 1991.PubMedGoogle Scholar
  63. 63.
    Larsen CG, Kristensen M, Paludan K, Deleuran B, Thomsen MK, Zachariae C, Kragballe K, Matsushima K, Thestrup-Pedersen K, 1, 25(OH)2-D3 is a potent regulator of interleukin-1 induced interleukin-8 expression and production. Biochem Biophys Res Commun 176: 1020–1026, 1991.PubMedGoogle Scholar
  64. 64.
    Standiford TJ, Strieter RM, Chensue SW, Westwick J, Kasahara K, Kunkel SL. IL-4 inhibits the expression of IL-8 from stimulated human monocytes. J Immunol 145: 1435–1439, 1990.PubMedGoogle Scholar
  65. 65.
    Oliveira IC, Mukaida N, Matsushima K, Vilcek J. NF-κB site mediates transcriptional inhibitional inhibition of the interleukin-8 gene by interferon. Mol Cell Biol, 1994 (in press).Google Scholar
  66. 66.
    Yang-Yen H-F, Chambard J-C, Sun Y-L, Smeal T, Schmidt TJ, Drouin J, Karin M. Transcriptional interference between c-Jun and the glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62:1205–1215, 1990.PubMedGoogle Scholar
  67. 67.
    Schreiber SL, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Immunol Today 13:136–142, 1992.PubMedGoogle Scholar
  68. 68.
    Northrop JP, Ho SN, Chen L, Thomas DJ, Timmerman LA, Nolan GP, Admon A, Crabtree GR. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369:497–502, 1994.PubMedGoogle Scholar
  69. 69.
    Thelen M, Peveri P, Kernen P, von Tscharner V, Walz A, Baggiolini M. Mechanism of neutrophil activation by NAF, a novel monocyte-derived peptide agonist. FASEB J 2:2702–2706, 1988.PubMedGoogle Scholar
  70. 70.
    Kupper RW, Dewald B, Jakobs KH, Baggiolini M, Gierschick P. G-protein activation by interleukin 8 and related cytokines in human neutrophil plasma membranes. Biochem J 282:429–434, 1992.PubMedGoogle Scholar
  71. 71.
    Smith RJ, Sam LM, Leach KL, Justen JM. Postreceptor events associated with human neutrophil activation by interleukin-8. J Leukocyte Biol 52:17–26, 1992.PubMedGoogle Scholar
  72. 72.
    Pike MC, Costello KM, Lamb KA. IL-8 stimulates phosphatidylinositol-4-phosphate kinase in human polymorphonuclear leukocytes. J Immunlol 148:3158–3164, 1992.Google Scholar
  73. 73.
    Baggiolini M, Imboden P, Detmers P. Neutrophil activation and the effects of interleukin-8/neutrophil-activating peptide l(IL-8/NAP-l) In: M Baggiolini, C Sorg, eds. Cytokines, Vol 4. Basel: Karger, 1992, pp 1–17.Google Scholar
  74. 74.
    Detmers PA, Lo SK, Olsen-Edbert E, Walz A, Baggiolini M, Cohn ZA. Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med 171:1155–1162, 1990.PubMedGoogle Scholar
  75. 75.
    Huber AR, Kunkel SL, Todd RT, Weiss SJ. Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254:99–102, 1991.PubMedGoogle Scholar
  76. 76.
    Peveri P, Walz A, Dewald B, Baggiolini M. A novel neutrophil-activating factor produced by human mononuclear phagocytes. J Exp Med 167:1547–1559, 1988.PubMedGoogle Scholar
  77. 77.
    Schröder JM. The monocyte-derived neutrophil activating peptide (NAP/interleukin 8) stimulates human neutrophil arachidonate-5-lipoxygenase, but not the relaease of celular arachidonate. J Exp Med 170:847–863, 1989.PubMedGoogle Scholar
  78. 78.
    White MV, Yoshimura T, Hook W, Kaliner MA, Leonard EJ. Neutrophil attractant/ activation protein-1 (NAP-1) causes human basophil histamine release. Immunol Lett 22:151–154, 1989.PubMedGoogle Scholar
  79. 79.
    Sebok K, Woodside D, Al-Aoukaty A, Ho AD, Gluck S, Maghazachi AA. IL-8 induces the locomotion of human Il-2-activated natural killer cells: Involvement of a guanine nucleotide binding (G0) protein. J Immunol 150:1524–1534, 1993.PubMedGoogle Scholar
  80. 80.
    Taub DD, Conlon K, Llyod AR, Oppenheim JJ, Kelvin DJ. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1α and MIP-1β. Science 260:355–358, 1993.PubMedGoogle Scholar
  81. 81.
    Oppenheim JJ. In vitro properties of attractive chemokines and in vivo Veritas. At Combined Meeting of the 8th Intl Lymphokine Workshop and the 4th Intl Workshop of Cytokines, Osaka, Oct 21, 1993.Google Scholar
  82. 82.
    Warringa RA, Koenderman L, Kok PTM, Kreukniet J, Bruijnzeel PLB. Modulation and induction of eosinophil Chemotaxis by granulocyte-macrophage colony stimulating factor and interleukin-3. Blood 77:2694–2700, 1991.PubMedGoogle Scholar
  83. 83.
    Dahinden CA, Kurimoto Y, De Weck AL, Lindley I, Dewald B, Baggiolini M. The neutrophil-activating peptide NAF/NAF-1 induces histamine and leukotriene release by interleukin-3 primed basophils. J Exp Med 170:1787–1792, 1989.PubMedGoogle Scholar
  84. 84.
    Kuna P, Reddigari SR, Kornfeld D, Kaplan AP. IL-8 inhibits histamine release from human basophils induced by histamine-releasing factors, connective tissue activating peptide III, and IL-3. J Immunol 147:1920–1924, 1991.PubMedGoogle Scholar
  85. 85.
    Walz A, Meloni F, Clark-Lewis I, von Tscharner V, Baggiolini M. [Ca2+]i changes and repiratory burst in human neutrophils and monocytes induced by NAP-1/interleukin-8, NAP-2, and gro/MGSA. J Leukocyte Biol 50:279–286, 1991.PubMedGoogle Scholar
  86. 86.
    Schadendorf D, Möller A, Algermissen B, Worm M, Sticherling M, Czarnetzki BM. IL-8 produced by human malignant melanoma cells in vitro is an esential autocrine growth factor. J Immunol 151:2667–2675, 1993.PubMedGoogle Scholar
  87. 87.
    Michel G, Kemény L, Peter RU, Beetz A, Ried C, Arenberger P, Ruzicka T. Interleukin-8 receptor-mediated Chemotaxis of normal human epidermal cells. FEBS Lett 305:241–243, 1992.PubMedGoogle Scholar
  88. 88.
    Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Einer VM, Einer SG, Strieter RM. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801, 1992.PubMedGoogle Scholar
  89. 89.
    Smith DR, Polverini PJ, Kunkel SL, Orringer MB, Whyte RI, Burdick MD, Wilke CA, Strieter RM. Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma. J Exp Med 179:1409–1415, 1994.PubMedGoogle Scholar
  90. 90.
    Colditz I, Zwahlen R, Dewald B, Baggiolini M. In vivo inflammatory activity of neutrophil-activating factor, a novel chemotactic peptide derived from human monocytes. Am J Pathol 134:755–760, 1989.PubMedGoogle Scholar
  91. 91.
    Rampart M, Van Damme J, Zonnekeyn L, Herman AG. Granulocyte chemotactic protein/interleukin-8 induces plasma leakage and neutrophil accumulation in rabbit skin. Am J Pathol 134:21–25, 1989.Google Scholar
  92. 92.
    Webb LMC, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Proc Natl Acad Sci USA 90:7158–7162, 1993.PubMedGoogle Scholar
  93. 93.
    Tanaka Y, Adams DH, Hubscher S, Hirano H, Siebenlist U, Shaw S. T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-lß. Nature 361:79–82, 1993.PubMedGoogle Scholar
  94. 94.
    Mulligan MS, Jones ML, Bolanowski MA, Baganoff MP, Deppeler CL, Meyers DM, Ryan US, Ward PA. Inhibition of lung inflammatory reactions in rats by an antihuman IL-8 antibody. J Immunol 150:5585–5595, 1993.PubMedGoogle Scholar
  95. 95.
    Harada A, Sekido N, Kuno K, Akiyama M, Kasahara T, Nakanishi I, Mukaida N, Matsushima K. Expression of recombinant rabbit IL-8 in Escherichia coli and establishment of the essential involvement of IL-8 in recruiting neutrophils into lipopolysaccharide- induced inflammatory site of rabbit skin. Int Immunol 6:681–690, 1993.Google Scholar
  96. 96.
    Endo H, Akahoshi T, Takagishi T, Kashiwazaki S, Matsushima K. Elevation of interleukin-8 (IL-8) levels in joint fluids of patients with rheumatoid arthritis and the induction by IL-8 of leukocyte infiltration and synovitis in rabbit joints. Lymphokine Cytokine Res 10:245–252, 1991.PubMedGoogle Scholar
  97. 97.
    Akahoshi T, Endo H, Kondo H, Kashiwazaki S, Kasahara T, Mukaida N, Harada A, Matsushima K. Essential involvement of interleukin 8 in neutrophil recruitment in rabbit with acute experimental arthritis induced by lipopolysaccharide and interleukin 1. Lymphokine Cytokine Res 13:113–116, 1994.PubMedGoogle Scholar
  98. 98.
    Welbourn CRB, Goldman G, Paterson IS, Valeri CR, Shepro D, Hechtman HB. Pathophysiology of ischaemia reperfusion injury: Central role of the neutrophil. Br J Surg 78:651–655, 1991.PubMedGoogle Scholar
  99. 99.
    Sekido N, Mukaida N, Harada A, Nakanishi I, Watanabe Y, Matsushima K. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature 365:654–657, 1993.PubMedGoogle Scholar
  100. 100.
    Wada T, Tomosugi N, Naito T, Yokoyama H, Kobayashi K-I, Harada A, Mukaida N, Matsushima K. Prevention of proteinuria by the administration of anti-interleukin 8 antibody in experimental acute immune complex-induced glomerulonephritis. J Exp Med 180:1135–1140, 1994.PubMedGoogle Scholar
  101. Moore M. Targeted deletion of the murine IL-8 receptor homolog. At Gordon Research Conference on Chemotactic Cytokines, June 19–24, Province, USA.Google Scholar
  102. 102.
    Broxymyer HE, Sherry B, Cooper S, Lu L, Maze R, Beckmann MP, Cerami A, Ralph P. Comparative analysis of the human macrophage inflammatory protein family of cytokines (chemokines) on proliferation of human myeloid progenitor cells: Interacting effects involving suppression, synergistic suppression, and blocking of suppression. J Immunol 150:3448–3458, 1993.Google Scholar
  103. 103.
    Laterveer L, Hamilton M, Lindley I, Willemze R, Fibbe WE. A single dose of interleukin-8 induces mobilization of myeloid progenitor cells with radioprotective capacity. Blood 82 (Suppl):293a, 1993.Google Scholar
  104. 104.
    Martich GD, Danner RL, Ceska M, Suffredini AF. Detection of interleukin 8 and turn or necrosis factor in normal humans after intravenous endotoxin: The effect of antiinflammatory agents. J Exp Med 173:1021–1024, 1991.PubMedGoogle Scholar
  105. 105.
    Ko Y-C, Mukaida N, Kasahara T, Muto S, Matsushima K, Kusano E, Asano Y, Itoh Y, Yamagishi Y, Kawai T. Specific elevation of interleukin-8 levels in peritoneal dialysate of patients on continous ambulatory peritoneal dialysis with petitonitis. J Clin Pathol 48: 115–119, 1995.PubMedGoogle Scholar
  106. 106.
    Wada T, Yokoyama H, Tomosugi N, Hisada Y, Ohta S, Naito T, Kobayashi K, Mukaida N, Matsushima K. Detection of urinary interleukin-8 in glomerular diseases. Kidney Int 46:455–460, 1994.PubMedGoogle Scholar
  107. 107.
    Brennan FM, Zachariae COC, Chantry D, Larsen CG, Turner M, Maini RN, Matsushima K, Feldmann M. Detection of interleukin 8 biological activity in synovial fluids from patients with rheumatoid arthritis and production of interleukin 8 mRNA by isolated synovial cells. Eur J Immunol 20:2141–2144, 1990.PubMedGoogle Scholar
  108. 108.
    Terkeltaub R, Zachariae C, Santoro D, Martin J, Peveri P, Matsushima K. Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis Rheum 34:894–903, 1991.PubMedGoogle Scholar
  109. 109.
    Seitz M, Dewald B, Ceska M, Gerber N, Baggiolini M. Interleukin-8 in inflammatory rheumatic diseases: Synovial fluid levels, relation to rheumatoid factors, production by mononuclear cells, and effects of gold sodium thiomalate and methotrexate. Rhematol Int 12:159–164, 1992.Google Scholar
  110. 110.
    Rampart M, Herman AG, Grillet B, Opdenakker G, Van Damme J. Development and application of a radioimmunoassay for interleukin-8: Detection of interleukin-8 in synovial fluids from patients with inflammatory joint disease. Lab Invest 66:512–518, 1992.PubMedGoogle Scholar
  111. 111.
    Schröder J-M. Generation of NAP-1 and related peptides in psoriasis and other inflam- matory skin diseases. In: M Baggiolini, C Sorg eds. Cytokines, Vol 4. Basel Karger, 1992, pp 54–76.Google Scholar
  112. 112.
    Nickoloff BJ, Karabin GD, Baker JNWN, Griffiths CEM, Sarma V, Mitra RS, Elder JT, Kunkel SL, Dixit VM. Cellular localization of interleukin-8 and its inducer, tumor necrosis factor-alpha in psoriasis. Am J Pathol 138:129–140, 1991.PubMedGoogle Scholar
  113. 113.
    Sticherling M, Bornscheuer E, Schröder J-M, Christophers E. Locaization of neutrophil-activating peptide-1/interleukin-8: Immunoreactivity in normal and psoriatic skin. J Invest Dermatol 96:26–30, 1991.PubMedGoogle Scholar
  114. 114.
    Abe Y, Kawakami M, Kuroki M, Yamamoto T, Fujii M, Kobayashi H, Yaginuma T, Kashii A, Saito M, Matsushima K. Transient rise in serum interleukin-8 concentration during acute myocardial infarction. Brit Heart J 70:132–134, 1993.PubMedGoogle Scholar
  115. 115.
    Donnelly SC, Strieter RM, Kunkel SL, Walz A, Robertson CR, Carter DC. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 341:643–647, 1993.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Naofumi Mukaida
  • Akihisa Harada
  • Kouji Matsushima

There are no affiliations available

Personalised recommendations