Advertisement

Root Growth and Rhizosphere Interactions in Tropical Forests

  • Robert L. SanfordJr.
  • Elvira Cuevas
Chapter

Abstract

The challenge of working belowground, on the least understood portion of tropical forests, has been met by increasing numbers of studies over the last 25 years. For many basic questions concerning root physiology, however, only preliminary observations have been made, often in only one forest type or within a single species. In contrast to aboveground portions of tropical trees, roots are only beginning to be examined. Fine roots have been measured in numerous ways in recent years, yet large roots (sometimes called coarse roots) have been largely ignored. This situation is analogous to extensive studies of leaf activity without corollary studies of stem growth and respiration. A bottom-up physiological approach, synthesizing results of detailed studies of tropical tree roots, is not yet possible. Nevertheless, sufficient information is available to indicate trends in biomass and fine root allocation patterns for some tropical forests types in relation to either water and/or nutrient availability. Separating fine and coarse roots into discreet categories is a convenient methodological tool, especially in the measurement of biomass (Bohn, 1979), however, such dichotomies tend to disperse the focus that should be oriented toward whole-plant strategies.Likewise, the separation of tropical roots into descriptive morphological categories (Jenik, 1971) has allowed temperate zone-trained biologists to contend with the diversity of root forms in tropical forests, but has not provided a useful format for asking physiological questions.

Keywords

Fine Root Soil Respiration Root Biomass Tropical Forest Fine Root Biomass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aerts, R., Boot, R. G. A. & Van Der Aart, P. J. M. (1991) The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia, 87, 551–559.Google Scholar
  2. Alexander, I. J. (1983) The significance of ectomycorrhizas in the nirogen cycle. Nitrogen as an Ecological Factor (eds. J. A. Lee, S. McNeill & I. H. Rorison) Blackwell Scientific, Oxford, UK.Google Scholar
  3. Allen, M. J., Sexton, J. C., Moore, T. S. & Christensen, M. (1981a) The influence of phosphate source on vesicular-arbuscular mycorrhizae of Bouteloua gracilis. New Phytologist., 87, 687–694.Google Scholar
  4. Allen, M. J., Smith, W. K., Moore, T. S. & Christensen, M. (1981b) Comparative water relations and photosynthesis of mycorrhizal and non-my-corrhiozal Bouteloua gracilis. New Phytologist., 88, 683–93.Google Scholar
  5. Barber, D. A. & Martin, J. K. (1976) The release of organic substances by cereal roots into the soil. New Phytologist., 76, 69–80.Google Scholar
  6. Bartholomew, W. V., Meyer, J. & Laudelout, H. (1953) Mineral nutrient immobilization under forest and grass fallow in the Yangambi (Belgian Congo) region. Publication de L’institut National Pour L’etude Agronomique du Congo Belge. Serie Scientifique 57.Google Scholar
  7. Basilevich, N. I. & Rodin, L. E. (1968) Reserves of organic matter in the underground sphere of terrestrial phytocoenoses. Methods of Productivity Studies in Root Systems and Rhizosphere Organisms (ed. M. S. Ghilarov) USSR Academy of Sciences, Leningrad.Google Scholar
  8. Basnet, K., Scatena, F. N., Likens, G. E. & Lugo, A. E. (1993) Ecological consequences of root grafting in tabonuco (Dacroydes excelsa) trees in the Luquillo experimental forest, Puerto Rico. Biotropica, 25, 28–35.Google Scholar
  9. Behera, N., Pati, D. P. & Basu, S. (1991) Ecological studies of soil microfungi in a tropical forest soil of Orissa, India. Journal of Tropical Ecology, 32, 136–143.Google Scholar
  10. Benzing, D. H. (1991) Aerial roots and their environments. Plant Roots: the Hidden Half. (eds. Y. Waisel, A. Eshel, & U. Kafkafi) Marcel Dekker, New York.Google Scholar
  11. Berish, C. (1982) Root biomass and surface area in three successional tropical forests. Canadian Journal of Forest Research, 12, 699–704.Google Scholar
  12. Berish, C. & Ewel, J.J. (1988) Root development in simple and complex tropical successional ecosystems. Plant and Soil, 106, 73–84.Google Scholar
  13. Bohn, W. (1979) Methods of Studying Root Systems. Springer-Verlag, Berlin.Google Scholar
  14. Bongers, F., Engelen, D. & Klinge, H. (1985) Phytomass structure of natural plant communities on Spodosols in southern Venezuela: The Bana woodland. Vegetatio, 63, 13–34.Google Scholar
  15. Bormann, F. H. (1966) The structure, function, and ecological significance of root grafts in Pinus strobus L. Ecological Monographs, 36, 1–26.Google Scholar
  16. Bowen, G. D. (1984) Tree roots and the use of soil nutrients. Nutrition of Plantation Forests (eds. G. D. Bowen & E. K. S. Nambiar) Academic Press, New York.Google Scholar
  17. Bray, J. R. (1963) Root production and the estimation of net productivity. Can. J. Bot., 41, 65–72.Google Scholar
  18. Brunig, E. F. & Sander, N. (1983) Ecosystem structure and functioning: Some interactions of relevance to agroforestry. Plant Research and Ag-roforestry (ed. P. A. Huxley) ICRAF, Nairobi, Kenya.Google Scholar
  19. Campbell, B. D., Grime, J. P. & Mackey, J. M. L. (1991) A trade-off between scale and precision in resource foraging. Oecologia, 87, 532–538.Google Scholar
  20. Castellanos, J., Maass, M. & Kummerow, J. (1991) Root biomass of a dry deciduous tropical forest in Mexico. Plant and Soil, 131, 225–228.Google Scholar
  21. Chapin, F. S. III (1980) The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233–260.Google Scholar
  22. Cox, G. & Tinker, P. B. (1976) Translocation and transfer of nutrients in vessicular- arbuscular mycorrhizas I. The arbuscule and phosphorus transfer: A quantitative ultrastructural study. New Phytologist., 77, 371–378.Google Scholar
  23. Cuevas, E. & Medina, E. (1986) Nutrient dynamics within Amazonian forests. I. Nutrient flux in fine litterfall and efficiency of nutrient utilization. Oecologia, 68, 466–472.Google Scholar
  24. Cuevas, E. & Medina, E. (1988) Nutrient dynamics within Amazonian forests. II. Fine root growth, nutrient availability, and leaf litter decomposition. Oecologia, 76, 222–235.Google Scholar
  25. Cuevas, E., Brown, S. & Lugo, A.E. (1991) Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant and Soil, 135, 257–68.Google Scholar
  26. De Foresta, H. & Kahn, F. (1984) Un systeme racinaire adventif dans un tronc creux d’Eperua falcata. Revue d’Ecologie: La Terre et Vie, 39, 347–50.Google Scholar
  27. Donald, C. M. (1958) The interaction of competition for light and for nutrients. Australian Journal of Agricultural Research,9, 421–32.Google Scholar
  28. Dransfield, J. (1978) Growth forms of rainforest palms. Tropical Trees as Living Systems (eds. P. B. Tomlinson & M. H. Zimmermann) Cambridge University Press, UK.Google Scholar
  29. Edwards, P. J. & Grubb, P. J. (1982) Studies of mineral cycling in a montane rainforest in New Guinea. IV. Soil characteristics and the division of mineral elements between the vegetation and soil. Journal of Ecology, 70, 649–666.Google Scholar
  30. Ericsson, A. & Persson, H. (1980) Seasonal changes in starch reserves and growth of fine roots of 20-year-old Scots pine. Structure and Function of a Northern Coniferous Forest — An Ecosystem Study (ed. T. Persson) Ecological Bulletins N. 32, Swedish National Science Research Council, Stockholm.Google Scholar
  31. Ewel, J., Berish, C., Brown, B., Price, N. & Raich, J. (1981) Slash and burn impacts on a Costa Rican wet forest site. Ecology, 62, 816–829.Google Scholar
  32. Field, C. & Mooney, H. A. (1986) The photosynthesis-nitrogen relationship in world plants. On the Economy of Plant Form and Function (ed. T.V. Givnish) Cambridge University Press, Cambridge.Google Scholar
  33. Fitter, A. H. (1991) Characteristics and functions of root systems. Plant Roots: The Hidden Half (eds. Y. Waisel, A. Eshel, & U. Kafkafi) Marcel Dekker, New York.Google Scholar
  34. Fitter, A. H. (1994) Architecture and biomass allocation of root systems. Exploitation of Environmental Heterogeneity by Plants (eds. M. M. Caldwell & R. W. Pearcy) Academic Press, San Diego, California.Google Scholar
  35. Ford, E. D. & Deans, J. D. (1977) Growth of a sitka spruce plantation: Spatial distribution and seasonal fluctuations of lengths, weights, and carbohydrate concentrations of fine roots. Plant Soil, 47, 463–85.Google Scholar
  36. Forster, M. (1970) Einige Beobachtungen zur Ausbildung des Wurzelsystems tropischer Waldbaume. Allgemeine Forst-und Jagzeitzung, 141, 185–188.Google Scholar
  37. Gerard, P. (1960) Etude ecologique de la foret dense Gilbertiodendron dew-evrei dans la region de l’Vele. Publication de L’institut National Pour L’etude Agronomique du Congo Belge, Serie Scientifique, 87, 1–159.Google Scholar
  38. Germain, R. & Evrard, C. (1956) Etude ecologique et phytosociologique de la forest a Brachystegia laurentii. Publication de L’Institut National Pour L’Etude Agronomique du Congo Belge, 67, 1–105.Google Scholar
  39. Gianinazzi-Pearson, V. & Gianinazzi, S. (1983) The physiology of vesicular-arbuscular roots. Plant and Soil, 71, 197–209.Google Scholar
  40. Gill, A. M. & Tomlinson, P. B. (1975) Aerial roots: An array of forms and functions. The Development and Function of Roots (eds. J. G. Torrey & D. T. Clarkson) Academic Press, New York.Google Scholar
  41. Glinski, J. & Lipiec, J. (1990) Soil Physical Conditions and Plant Growth. CRC Press, Boca Raton, Florida.Google Scholar
  42. Golley, F. B. (1983) Tropical rainforest ecosystems: Structure and function. Ecosystems of the World, 14A, Elsevier Scientific, Amsterdam.Google Scholar
  43. Golley, F. B., McGinnis, J. T., Clements, R. G., Child, G. I. & Duever, M. J. (1975) Mineral Cycling in a Tropical Moist Forest, University Georgia Press, Athens, GA.Google Scholar
  44. Golley, F. B., Mcginnis, J. T. & Clements, R. C. (1971) La biomasa y estructura de algunos bosques de Darien, Panama. Turrialba, 21, 189–196.Google Scholar
  45. Golley, F. B., Odum, H. T. & Wilson, R. F. (1962) The structure and metabolism of a Puerto Rican red mangrove forest in May. Ecology, 43, 9–19.Google Scholar
  46. Gower, S. T. (1987) Relations between mineral nutrient availability and fine root biomass in two Costa Rican tropical wet forests: A hypothesis. Biot-ropica, 19, 171–175.Google Scholar
  47. Graham, B. F. Jr. & Bormann, F. H. (1966) Natural root grafts. Botanical Review, 32, 255–292.Google Scholar
  48. Greenland, D. J. & Kowal, J. M. L. (1960) Nutrient content of the moist tropical forest of Ghana. Plant Soil, 12, 154–173.Google Scholar
  49. Gregory, P. J. (1987) Development of root systems in plant communities. Root Development and Function, (eds. P. J. Gregori, J. V. Lake & D. A. Rose) Cambridge University Press, Cambridge.Google Scholar
  50. Grime, J. P. (1973) Competitive exclusion in herbaceous vegetation. Nature, 242, 344–347.Google Scholar
  51. Grime, J. P. (1979) Plant Strategies and Vegetation Processes. Wiley & Sons, Chichester, UKGoogle Scholar
  52. Grime, J. P. (1993) The role of plasticity in exploiting environmental heterogeneity. Exploitation of Environmental Heterogeneity by Plants (eds. M. M. Caldwell & R. W. Pearcy) Academic Press, San Diego, California.Google Scholar
  53. Grimm, V. & Fassbender, H. W. (1981) Ciclos bioquimicos en un ecosistems forestalde los Andes Occidentales de Venezuela. III. Inventario de las reservas organicos y minerales (N, P, K, Ca, Mg, Mn, Al, Na). Turrialba, 31, 27–37.Google Scholar
  54. Halle, F. & Oldeman, R. A. A. (1970) Essai sur L’architecture et la Dynamique de Croissance des Arbres Tropicaux. Masson, Paris.Google Scholar
  55. Herwitz, S. R. (1991) Aboveground adventitious roots and stemflow chemistry of Ceratopetalum virchowii in an Australian montane tropical rainforest. Biotropica, 23, 210–218.Google Scholar
  56. Herrera, R., Merida, T., Stark, N. & Jordan, C. F. (1978) Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften, 65, 208.Google Scholar
  57. Hiltner, L. (1904) Uber neuere Erfarungen und Probleme auf dem Gebeit der Bodenbakteriologie und unter besonderer Beruck sichtigung der Grundungung und Brache. Arbeiten Duetsche Landwirtschafts-Gesellschaft, 98, 59–78.Google Scholar
  58. Ho, I. & Trappe, J. M. (1973) Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nature, 244, 30–31.Google Scholar
  59. Hogberg, P. (1990) 15N natural abundance as possible marker of the ec-tomycorrhizal habit of trees on mixed African woodlands. New Phytologist, 115, 483–86.Google Scholar
  60. Holbrook, N. M., Putz, F. E. & Chai, P. (1985) Aboveground branching of the stilt-rooted palm Eugeissona minor. Principes, 29, 142–46.Google Scholar
  61. Hozumi, K., Yoda, K., Kokawa, & Kira, T., (1969) Production ecology of tropical rainforests in Southeast Cambodia. I. Plant biomass. Nature and Life in South-east Asia (Kyoto) 6, 1–51.Google Scholar
  62. Huston, M.A. & Smith, T. A. (1987) Plant succession: Life history and competition. American Naturalist, 130, 168–98.Google Scholar
  63. Huttel, C. (1975) Root distribution and biomass in three Ivory Coast rainforest plots. Tropical Ecological Systems. (eds. F. B. Golley & E. Medina) Springer-Verlag, Berlin.Google Scholar
  64. Iwasa, Y. & Roughgarden, J. (1984) Shoot/root balance of plants: optimal growth of a system with many vegetative organs. Theoretical Population Biology, 25, 78–104.Google Scholar
  65. Janos, D. P. (1983) Tropical mycorrhizas, nutrient cycles and plant growth. Tropical Rain Forest: Ecology and Management (eds. S. L. Sutton, T. C. Whitmore), & A. C. Chadwick Blackwell Scientific Publications, Oxford.Google Scholar
  66. Janos, D. P. (1985) Mycorrhizal fungi: Agents or symptoms of tropical community composition? Proceedings of the 6 th North American Conference on Mycorrhizae (ed. R. Molina) Forest Research Laboratory, Corvallis, Oregon.Google Scholar
  67. Jenik, J. (1971) Root structure and underground biomass in equatorial forests. Productivity of Forest Ecosystems (Proceedings, Brussels, Symposium, 1969) UNESCO, Paris.Google Scholar
  68. Jenik, J. (1978). Roots and root systems in tropical tres: Morphologic and ecologic aspects. Tropical Trees as Living Systems, (eds. P. B. Tomlinson & M. H. Zimmermann) Cambridge University Press, UK.Google Scholar
  69. Jordan, C. F. & Uhl, C. (1978) Biomass of a tierra firme forest of the Amazon basin. Oecologia Plantarum, 13, 255–268.Google Scholar
  70. Jung, G. (1969) Cycles biogeochimiques dans un ecosysteme de region tropicale seche Acacia albida (Del.). Oecologia Plantarum, 4, 195–210.Google Scholar
  71. Kato, R., Tadaki, Y, & Ogawa, H. (1978) Plant biomass and growth increment studies in Pasoh forest. Malaysian Nature Journal, 30, 14–18.Google Scholar
  72. Kavanaugh, T. & Kellman, M. (1992) Seasonal pattern of fine root proliferation in a tropical dry forest. Biotropica, 24, 157–65.Google Scholar
  73. Keeley, J. E. (1988) Population variation in root grafting and a hypothesis. Oikos, 52, 364–66.Google Scholar
  74. Kira, T., Ogawa, H., Yoda, K., & Ogino, K. (1967) Comparative ecological studies on three main types of forest vegetation in Thailand. IV. Dry matter production with special reference to the Khao Chong rainforest. Nature and Life in Southeast Asia, Kyoto, 6, 149–174.Google Scholar
  75. Kira, T. (1978) Community structure and organic matter dynamics in tropical lowland forests of southeast Asia with special reference to pasoh forest, West Malaysia. Tropical Trees as Living Systems (eds. P. B. Tomlinson & M. H. Zimmermann) Cambridge University Press. UK.Google Scholar
  76. Klepper, B. (1991). Root-shoot relationships. Plant Roots: The Hidden Half. (eds. Y. Waisel, A. Eshel, & U. Kafkafi) Marcel Dekker, New York.Google Scholar
  77. Klinge, H. & Herrera, R. (1978) Biomass studies in Amazon caatinga forest in southern Venezuela. 1. Standing crop of composite root mass in selected stands. Tropical Ecology, 19, 93–110.Google Scholar
  78. Klinge, H., Medina, E. & Herrera, R. (1977). Studies on the ecology of Amazon caatinga forest in southern Venezuela. Acta Scientifica Venezolana, 28, 270–76.Google Scholar
  79. Koopmans, T. Th. & Andriesse, J. P. (1982) Baseline study monitoring project of nutrient cycling in shifting cultivation. Department of Agricultural Research Internal Report BO 82–6, Koninklijk Instituut voor de Tropen, Amsterdam.Google Scholar
  80. Kumar, H., Kulkarmi, D. & Srimathi, R. A. (1985) Natural grafts in sandal. Indian Forester, 8, 153–154.Google Scholar
  81. Kummerow, J., Castellanos, J., Mass, M. & Larigauderie A. (1990) Production of fine roots and the seasonality of their growth in a Mexican deciduous dry forest. Vegetatio 90, 73–80.Google Scholar
  82. Kuntz, J. E. & Riker, A. J. (1956) The use of radioactive isotopes to ascertain the role of root grafting in the translocation of water nutrients and diseases among forest trees. Proceedings of the International Conference on the Peaceful Uses of Atomic Energy (Geneva, Switzerland) 12, 144–48.Google Scholar
  83. Kurz, W. A. & Kimmons, J. P. (1987) Analysis of some sources of error in methods used to determine fine root production in forest ecosystems: A simulation approach. Canadian Journal of Forest Research, 17, 909–912.Google Scholar
  84. LaRue, E.D. (1952) Root grafting in tropical trees. Science 115, 296.PubMedGoogle Scholar
  85. Lawson, G. W., Armstrong-Mensah, K. O. & Hall, J. B. (1970) A catena in tropical moist semideciduous forest near Kade, Ghana. Journal of Ecol., 58, 371–398Google Scholar
  86. Lodge, D.J. (1993) Nutrient cycling by fungi in wet tropical forests. Aspects of Tropical Mycology (eds. S. Isaac, J.C. Frankland, R. Watling & A. J. Whalley) Cambridge University Press, Cambridge, UK.Google Scholar
  87. Lodge, D. J., McDowell, W. H. & McSwiney, C. P. (1994) The importance of nutrient pulses in tropical forests. Trends in Ecology and Evolution, 9, 384–387.PubMedGoogle Scholar
  88. Marshall, J. D. & Waring, R. H. (1985) Predicting fine root production and turnover by monitoring root starch and soil temperature. Canadian Journal of Forest Research, 15, 791–800.Google Scholar
  89. Martin, J. K. (1977) Factors influencing the loss of organic carbon from wheat roots. Soil Biology and Biochemistry, 9, 1–17.Google Scholar
  90. Medina, E. & Cuevas, E. (1989) Patterns of nutrient accumulation and release in Amazonian forests of the upper Rio Negro basin. Mineral Nutrients in Tropical Forest and Savanna Ecosystems (ed. J. Proctor) Blackwell Scientic, Oxford, UK.Google Scholar
  91. Medina, E., Klinge, H., Jordan, C. & Herrera, R. (1980) Soil respiration in Amazonian rain forests in the Rio Negro basin. Flora, 170, 240–250.Google Scholar
  92. Mensah, K. O. & Jenik, J., (1968) Root systems of tropical trees. 2. Features of the root system of Iroko (Chlorophora excelsa Benth. et. Hook.). Preslia Prague, 40, 21–27.Google Scholar
  93. Mishra, R. R. & Kanaujia, R. S. (1973/74) Investigations into the rhizosphere microflora XII. Seasonal variation in the microflora of certain gymnos-perms. Sydowia, 27(1/6), 302–311.Google Scholar
  94. Moyersoen, B. (1993). Ectomicorrizas y Micorrizas Vesculo-arbusculares en Caatinga Amazonica del Sur de Venezuela. Scientia Guaianae Caracas, Venezuela. Google Scholar
  95. Muller, D & Nielsen, J. (1965) Production brute, pertes par respiration et production nettee dans la foret ombriphile tropicale. Det Forstlige Forsog-svaesen i Danmark, 29, 69–160.Google Scholar
  96. Murphy, P. G. & Lugo, A. E. (1986) Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica 18, 89–96.Google Scholar
  97. Myers, R.J.K., Palm, C.A., Cuevas, E., Gunatilleke, I.U.N. & Brossard, M. (1994) Synchronization of nutrient mineralization and plant nutrient demand. Biological Management of Tropical Soil Fertility (eds. P. Woomer, & M. J. Swift) John Wiley & Sons, West Sussex, U. K.Google Scholar
  98. Nadelhoffer, K. J. & Raich, J. W. (1992) Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73, 1139–1147.Google Scholar
  99. Nadkarni, N. (1981). Canopy roots: Convergent evolution in rainforest nutrient cycles. Science, 214, 1023–1024.PubMedGoogle Scholar
  100. Nadkarni, N. M. (1986) The nutritional effects of epiphytes on host trees with special reference to alteration of precipitation chemistry. Selbyana, 9, 44–51.Google Scholar
  101. Nepstad, D. C., De Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., da Silva, E. D., Stone, T. A., Trumbore, S. E. & Vieira, S. (1995) The deep-soil link between water and carbon cycles of Amazonian forests and pastures. Nature 372, 666–667.Google Scholar
  102. Newbery, D. M., Alexander, I. J., Thomas D. W. & Gartlan, J. S. (1988) Ectomycorrhizal rainforest legumes and soil phosphorus in Korup National Park, Cameroon. New Phytologist., 109, 433–450.Google Scholar
  103. Newman, E. I. (1973) Competition and diversity in herbaceous vegetation. Nature, 224, 310.Google Scholar
  104. Newman, E. I. (1983) Interactions between plants. Physiological plant ecology. III. Responses to the chemical and biological environment. Encyclopedia of Plant Physiology, New Series 12C. Springer-Verlag, Berlin.Google Scholar
  105. Newman, E. I. (1985) The rhizosphere: Carbon sources and microbial populations. Ecological Interactions in the Soil (ed. A. H. Fitter) Blackwell Scientific, Oxford.Google Scholar
  106. Ogawa, H., Yoda, K. & Kora, T. (1961) A preliminary survey of the vegetation of Thailand. Nature and Life in Southeast Asia (Kyoto), 5, 49–80Google Scholar
  107. Pang, P. C. & Paul, E. A. (1980) Effects of vesicular-arbuscular mycorrhizae on 14C and 15N distribution in nodulated faba beans. Canadian Journal of Soil Science, 60, 241–250.Google Scholar
  108. Papavizas, G.C. & Davey, C. B. (1961). Extent and nature of the rhizospere of Lupinus. Plant and Soil, 14, 215–236.Google Scholar
  109. Parrotta, J. A. & Lodge, D. J. (1991) Fine root dynamics in subtropical wet forest following hurricane disturbance in Puerto Rico. Biotropica, 23 (Suppl.) 343–347.Google Scholar
  110. Paschke, M. W. & Dawson, J. O. (1992) The occurrence of Frankia in tropical forest soils of Costa Rica. Plant and Soil, 142, 63–67.Google Scholar
  111. Pickett, S. T. A. (1976) Distribution and interactions of surface roots of Costilla elastica (Moraceae) in lowland Costa Rica. Turrialba, 26, 156–159.Google Scholar
  112. Putz, F. E. & Holbrook, M. (1989) Strangler fig rooting habits and nutrient relations in the llanos of Venezuela. American Journal of Botany, 76, 781–788.Google Scholar
  113. Raich, J. (1980) Fine roots grow rapidly after forest felling. Biotropica, 12, 231–232.Google Scholar
  114. Raich, J. (1983) Understory palms as nutrient traps: A hypothesis. Brenesia, 21, 119–129.Google Scholar
  115. Raich, J. W. & Nadelhoffer, K.J. (1989) Belowground carbon allocation in forest ecosystems: Global trends. Ecology, 70, 1346–1354.Google Scholar
  116. Read, D. J., Leake, J. R. & Langdale, A. R. (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants. Nitrogen, Phosphorus and Sulphur Utilization by Fungi (eds. L. Boddy, R. Marchant, & D. J. Read) Cambridge University Press, Cambridge, UK.Google Scholar
  117. Rovira, A. D. (1969) Plant root exudates. Botanical Review, 35, 35–57.Google Scholar
  118. Russell, E. W. (1977) Soil Conditions and Plant Growth, 10 th edition. Longman Group Ltd. London.Google Scholar
  119. Salcedo, I. H., Elliott, E .T. & Sampaio, E. V. S. B. (1991) Mechanisms controlling phosphorus retention in the Utter mat of Atlantic coastal forests. Phosphorus Cycles in Terrestrial and Aquatic Ecosystems. Regional Workshop 3: South and Central America (eds. H. Tiessen, D. Lopez-Her-nandez & I. H. Salcedo) SCOPE, UNEP & Saskatchewan Institute of Pedology, Saskatoon, Canada.Google Scholar
  120. Sanford, R. L. Jr., (1987) Apogeotropic roots in an Amazon rainforest. Science, 235, 1062–1064.PubMedGoogle Scholar
  121. Sanford, R. L. Jr., (1989) Root systems of three adjacent, old growth Amazon forests and associated transition zones. Journal of Tropical Forest Research, 1, 268–279.Google Scholar
  122. Sanford, Jr., R. L. (1990) Fine root biomass under light gap openings in an Amazonian rainforest. Oecologia, 83, 541–545.Google Scholar
  123. Sanford, R. L., Jr., (1995) Fine root production, mortality and nutrient turnover in successional and old-growth Amazon rain forests. Journal Tropical Ecology. (submitted)Google Scholar
  124. Sanford, R. L. Jr., & Vitousek, P. M. (1995) Root and leaf litter production, and nutrient turnover in lowland tropical moist forest, Costa Rica. Ecology (submitted)Google Scholar
  125. Scatena, F. N. & Larsen M. C. (1991) Physical aspects of hurricane Hugo in Puerto Rico. Biotropica, 23, 317–323.Google Scholar
  126. Silver, W. L. & Vogt, K. A. (1993) Fine root dynamics following single and multiple disturbances in subtropical wet forest ecosystems. Journal of Ecology, 81, 729–738.Google Scholar
  127. Singh, K. P. & Singh, R. P. (1981) Seasonal variation in biomass and energy of small roots in tropical dry deciduous forest, Varanasi, India. Oikos, 37, 88–92.Google Scholar
  128. Singh, K. P. & Srivastava, S. K. (1984) Spatial distribution of fine roots in young trees (Tectona grandis) of varying girth sizes. Pedobiologia,27, 161–170.Google Scholar
  129. Singh, K. P. & Srivastava, S. K. (1985) Seasonal variations in the spatial distribution of root tips of teak (Tectona grandis Linn F.) plantations in the Varanasi Forest Division, India. Plant and Soil, 84, 93–104.Google Scholar
  130. Singh, J. S., Laurenroth, W. K., Hunt, H. W. & Swift, D. W. (1984) Bias and random errors in estimators of net root production: a Simulation approach. Ecology, 65, 1760–1764.Google Scholar
  131. Srivastava, S. K., Singh, K. P. & Upadhyay, R. S. (1986) Fine root growth dynamics in teak (Tectona grandis Linn. F.). Canadian Journal of Forest Research, 16, 1360–1364.Google Scholar
  132. Stark, N. & Jordan, C. F. (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology, 59, 434–37.Google Scholar
  133. Stark, N. & Spratt, M. (1977) Root biomass and nutrient storage in rainforest Oxisols near San Carlos de Rio Negro. Journal of Tropical Ecology, 18, 1–9.Google Scholar
  134. St. John, T. V. (1983) Response of tree roots to decomposing organic matter in two lowland Amazonian rain forests. Canadian Journal of Forest Research, 13, 346–349.Google Scholar
  135. St. John, T. V. & Uhl, C. (1983) Mycorrhizae in the rainforest of San Carlos de Rio Negro, Venezuela. Acta Scientifica Venezolana, 34, 233–237.Google Scholar
  136. Tanner, E. V. J. (1985) Jamaican montane forests: Nutrient capital and cost of growth. Journal of Ecology 73, 553–568.Google Scholar
  137. Tiessen, H., Chacon, P. & Cuevas, E. (1994b) Phosphorus and nitrogen status in soils and vegetation along a toposequence of dystrophic rainforests on the upper Rio Negro. Oecologia, 99, 145–150.Google Scholar
  138. Tiessen, H. Cuevas, E. & Chacon, P. (1994a) The role of organic matter in sustaining soil fertility. Nature, 371, 783–785.Google Scholar
  139. Tilman, D. (1988) Plant Strategies and the Structure and Dynamics of Plant Communties. Princeton University Press, Princeton, New Jersey.Google Scholar
  140. Tilman, D. (1989) Competition, nutrient reduction and the competitive neighborhood of a bunchgrass. Functional Ecology, 3, 215–219.Google Scholar
  141. Tinker, P. B. (1978) Effects of vesicular-arbuscular mycorrhizas on plant nutrition and plant growth. Physiologie Vegetale, 16, 743–751.Google Scholar
  142. Uhl, C. & Jordan, C. F. (1984) Succession and nutrient dynamics following forest cutting and burning in Amazonia. Ecology, 65, 1476–1490.Google Scholar
  143. Vitousek, P. M. & Sanford, R. L. (1986) Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics, 17, 137–167.Google Scholar
  144. Vogt, K. A. & Bloomfield, J. (1991) Tree root turnover and senescence. Plant Roots; The Hidden Half (eds. Y. Waisel, A. Eshel & U. Kafkafi) Marcel Dekker, New York.Google Scholar
  145. Voorhoeve, I. A. G. (1964) Some notes on the tropical rainforest of the Yoma-Gola national forest near Bomi Hills, Liberia. Commonwealth Forestry Review, 43, 17–24.Google Scholar
  146. Vyas, L. N., Gar, R. K. & Vyas, N. L. (1977) Stand structure and aboveground biomass in dry deciduous forests of Aravalli Hills at Udipar (Rajasthan) India. Biologia (Bratislava) 32 265–270.Google Scholar
  147. Walter, H. (1971) Ecology of Tropical and Subtropical Vegetation. Oliver and Boyd, Edinburgh.Google Scholar
  148. Whipps, J. M. & Lynch, J. M. (1983) Substrate flow and utilization in the rhizosphere of cereals. New Phytologist, 95, 605–623.Google Scholar
  149. Yang, J. C. & Insam, H. (1991) Microbial biomass and relative contributions of bacteria and fungi in soil beneath tropical rainforest, Hainan Island, China. Journal Tropical Ecology, 7, 385–395.Google Scholar
  150. Zentmeyer, G. A. (1961) Chemotaxis of zoospores for roots exudates. Science, 133, 1595–1596.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Robert L. SanfordJr.
  • Elvira Cuevas

There are no affiliations available

Personalised recommendations