Electroporation and Transgenic Plant Production

  • M. Joersbo
  • J. Brunstedt


Electroporation is a well-established method for production of transgenic plants. Short high-voltage pulses can permeabilize the protoplast plasma membrane, facilitating uptake of plasmid DNA that can become expressed transiently and, eventually, be stably incorporated into the genome.

The major electrical parameters are field strength and pulse duration, which are inversely related and can be chosen within wide ranges (100–5000 V/cm and 0.01–100 msec). Stable transformation requires less rigorous electrical conditions than transient expression. Transient and stable transformation increase with plasmid DNA concentration, up to about 100 µg/mL; addition of carrier DNA lowers the amount of plasmid DNA required for transformation. Linearized plasmid DNA and heat shock enhance stable transformation. Addition of PEG stimulates transient expression and, in most cases, stable transformation. The transformation rate is also affected by protoplast size, pulse type, culture medium, and temperature.

Stable transformation frequencies are in the range 0.0001–0.1% of the electroporated protoplasts. Transgenic plants contain, on average, from one to three copies of the exogenous gene, and all copies are usually integrated into one site in the genome. The inserted plasmid DNA is often modified by rearrangement and ligation events, and the copy number does generally not correlate with expression level. Transgenic plants regenerated from electroporated protoplasts are most often fertile, and the exogenous genes appear to be inherited as a single dominant character in a Mendelian fashion.

Although the cell wall is generally regarded to be impermeable to DNA, some intact cells and tissues can be induced to take up DNA by electroporation.


Transgenic Plant Transient Expression Transgenic Rice Plant Stable Transformation Transient Gene Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul-Baki, A. A., Saunders, J. A., Matthews, B. R, and Pittarelli, G. W. (1990). DNA uptake during electroporation of germinating pollen grains. Plant Sci. 70: 181–190.CrossRefGoogle Scholar
  2. Akella, V., and Lurquin, P. F. (1993). Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep. 12: 110–117.CrossRefGoogle Scholar
  3. Battraw, M., and Hall T. C. (1991). Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and β-glucuronidase genes. Theor. Appl. Genet. 82: 161–168.CrossRefGoogle Scholar
  4. Battraw, M., and Hall, T. C. (1992). Expression of a chimeric neomycin phosphotransferase II gene in first and second generation transgenic rice plants. Plant Sci. 86: 191–202.CrossRefGoogle Scholar
  5. Bekkaoui, F., Pilon, M., Laine, E., Raju, D. S. S., Crosby, L., and Dubstan, D. I. (1988). Transient gene expression in electroporated Picea glauca protoplasts. Plant Cell Rep. 7: 481–484.CrossRefGoogle Scholar
  6. Bellini, C., Chupeau, M.-C., Guerche, P., Vastra, G., and Chupeau, Y. (1989). Transformation of Lycopersicon peruvianum and Lycopersicon esculentum mesophyll protoplasts by electroporation. Plant Sci. 65: 63–75.CrossRefGoogle Scholar
  7. Benz, R., and Zimmermann, U. (1980). Relaxation studies on cell membranes and lipid bilayers in the high electric field range. Bioelectrochem. Bioenerg. 7: 723–739.CrossRefGoogle Scholar
  8. Boston, R. S., Becwar, M. R., Ryan, R. D., Goldsbrough, P. B., Larkins, B. A., and Hodges, T. K. (1987). Expression from heterologous promotors in electroporated carrot protoplasts. Plant Physiol. 83: 742–746.PubMedCrossRefGoogle Scholar
  9. Bower, R., and Birch, R. G. (1990). Competence for gene transfer by electroporation in a subpopulation of protoplasts from uniform carrot cell suspension cultures. Plant Cell Rep. 9: 386–389.CrossRefGoogle Scholar
  10. Charest, P. J., Devantier, Y., Ward, C., Jones, C., Schaffer, U., and Klimaszewska, K. K. (1991). Transient expression of foreign genes in the gymnosperm hybrid larch following electroporation. Can. J. Bot. 69: 1731–1736.CrossRefGoogle Scholar
  11. Christou, P., Murphy, J. E., and Swain, W. F. (1987). Stable transformation of soybean by electroporation and root formation from transformed callus. Proc. Natl. Acad. Sci. USA 84: 3962–3966.PubMedCrossRefGoogle Scholar
  12. Chupeau, M.-C., Bellini, C., Guerche, P., Maisonneuve, B., Vastra, G., and Chupeau, Y. (1989). Transgenic plants of lettuce (Lactuca sativa) obtained through electroporation of protoplasts. Biol. Technol. 7: 503–508.Google Scholar
  13. Coster, H. G. L. (1968). The role of pH in the punch-through effect in the electrical characteristics of Chara australis. Aust. J. Biol. Sci. 22: 365–374.Google Scholar
  14. Coster, H. G. L., and Zimmermann, U. (1975). The mechanism of electrical breakdown in the membranes of Valonia utricularis. J. Membrane Biol. 22: 73–90.CrossRefGoogle Scholar
  15. Dean, C., Jones, J., Favreau, M., Dunsmuir, P., and Bedbrook, J. (1988). Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucl. Acids Res. 16: 9267–9282.PubMedCrossRefGoogle Scholar
  16. Dekeyser, R. A., Claes, B., De Rycke, M. U., Habets, M. E., and Van Montagu, M. C. (1990). Transient gene expression in intact and organized rice tissues. The Plant Cell 2: 591–602.PubMedCrossRefGoogle Scholar
  17. D’Halluin, K., Bonre, E., Bossut, M., De Beuckeleer, M., and Leemans, J. (1992). Transgenic maize plants by tissue electroporation. The Plant Cell 4: 1495–1505.PubMedCrossRefGoogle Scholar
  18. Fennel, A., and Hauptmann, R. (1992). Electroporation and PEG delivery of DNA into maize microspores. Plant Cell Rep. 11: 567–570.CrossRefGoogle Scholar
  19. Frearson, E. M., Power, J. B., and Cocking, E. C. (1973). The isolation, culture and regeneration of Petunia leaf protoplasts. Dev. Biol. 33: 130–137.PubMedCrossRefGoogle Scholar
  20. Fromm, M., Taylor, L. P., and Walbot, V. (1985). Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA 82: 5824–5828.PubMedCrossRefGoogle Scholar
  21. Fromm, M., Taylor, L. P., and Walbot, V. (1986). Stable transformation of maize after gene transfer by electroporation. Nature 319: 791–793.PubMedCrossRefGoogle Scholar
  22. Guerche, P., Bellini, C., Le Moullec, J.-M., and Gaboche, M. (1987a). Use of a transient expression assay for the optimization of direct gene transfer into tobacco mesophyll protoplasts by electroporation. Biochimie 69: 621–628.PubMedCrossRefGoogle Scholar
  23. Guerche, P., Charbonnier, M., Jouanin, L., Tourneur, C., Paszkowski, J., and Pelletier, G. (1987b). Direct gene transfer by electroporation in Brassica napus. Plant Sci. 52: 111–116.CrossRefGoogle Scholar
  24. Hauptmann, R. M., Ozias-Akins, P., Vasil, V., Tabaeizadeh, Z., Rogers, S. G., Horsch, R. B., Vasil, I. K., and Fraley, R. T. (1987). Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep. 6: 265–270.CrossRefGoogle Scholar
  25. Hobbs, S. L. A., Jackson, J. A., Baliski, D. S., Delong, C. M. O., and Mahon, J. D. (1990). Genotype- and promotor-induced variability in transient β-glucuronidase expression in pea protoplasts. Plant Cell Rep. 9: 17–20.CrossRefGoogle Scholar
  26. Horn, M. E., Shillito, R. D., Conger, B. V., and Harms, C. T. (1988). Transgenic plants of orchard grass (Dactylis glomerata L.) from protoplasts. Plant Cell Rep. 7: 469–472.CrossRefGoogle Scholar
  27. Huang, Y.-W. and Dennis, E. S. (1989). Factors affecting stable transformation of maize protoplasts by electroporation. Plant Cell, Tissue and Organ Cult. 18: 281–296.CrossRefGoogle Scholar
  28. Joersbo, M. (1990). Methods for direct gene transfer into plant protoplasts. Ph.D. Thesis, University of Aarhus, Denmark.Google Scholar
  29. Joersbo, M., and Brunstedt, J. (1990a). Direct gene transfer to plant protoplasts by electroporation by alternating, rectangular and exponentially decaying pulses. Plant Cell Rep. 8: 701–705.CrossRefGoogle Scholar
  30. Joersbo, M., and Brunstedt, J. (1990b). Quantitative relationship between parameters of electroporation. J. Plant Physiol. 137: 169–174.Google Scholar
  31. Joersbo, M., Jorgensen, R. B., and Olesen, P. (1990). Transient electropermeabilization of barley microspores to propidium iodide. Plant Cell Tissue Organ Cult. 23: 125–129.CrossRefGoogle Scholar
  32. Joersbo, M., and Brunstedt, J. (1991). Electroporation: Mechanism and transient expression, stable transformation and biological effects in plant protoplasts. Physiol. Plant. 81: 256–264.CrossRefGoogle Scholar
  33. Jones, H., Ooms, G., and Jones, M. G. K. 1989. Transient gene expression in electroporated Solanum protoplasts. Plant Mol. Biol. 13: 503–511.PubMedCrossRefGoogle Scholar
  34. Kirches, E., Frey, N., and Schnabl, H. (1991). Transient gene expression in sunflower mesophyll protoplasts. Bot. Acta 104: 212–216.Google Scholar
  35. Köehler, F., Golz, C., Eapen, S., Kohn, H, and Schieder, O. (1987a). Stable transformation of moth bean Vigna aconitifolia via direct gene transfer. Plant Cell Rep. 6: 313–316.CrossRefGoogle Scholar
  36. Köehler, F., Golz, C., Eapen, S., and Schieder, O. (1987b). Influence of plant cultivar and plasmid-DNA on transformation rates of tobacco and moth bean. Plant Sci. 53: 87–91.CrossRefGoogle Scholar
  37. Krens, F. A., Molendijk, L., Wullems, G. J., and Schilperoort, R. A. (1982). In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72–74.CrossRefGoogle Scholar
  38. Lindsey, K., and Jones M. G. K. (1987a). The permeability of electroporated cells and protoplasts of sugar beet. Planta 172: 346–355.CrossRefGoogle Scholar
  39. Lindsey, K., and Jones, M. G. K. (1987b). Transient gene expression in electroporated protoplasts and intact cells of sugar beet. Plant Mol. Biol. 10: 43–52.CrossRefGoogle Scholar
  40. Lindsey, K., and Jones, M. G. K. (1989). Stable transformation of sugar beet protoplasts by electroporation. Plant Cell Rep. 8: 71–74.CrossRefGoogle Scholar
  41. Lurquin, P. F., and Paszty, C (1988). Electroporation of tobacco protoplasts with homologous and non-homologous transformation vectors. J. Plant Physiol. 133: 332–335.Google Scholar
  42. Morikawa, H., Iida, A., Matsui, C., Ikegami, M., and Yamada, Y. (1986). Gene transfer into intact plant cells by electroinjection through cell walls and membranes. Gene 41: 121–124.PubMedCrossRefGoogle Scholar
  43. Oard, J. H., Paige, D., and Dvorak, J. (1989). Chimeric gene expression using maize intron in cultured cells of breadwheat. Plant Cell Rep. 8: 156–160.CrossRefGoogle Scholar
  44. Ou-Lee, T.-M., Turgeon, R., and Wu, R. (1986). Expression of a foreign gene linked to either a plant-virus or a Drosophila promotor, after electrooration of protoplasts of rice, wheat and sorghum. Proc. Natl. Acad. Sci. USA 83: 6815–6819.PubMedCrossRefGoogle Scholar
  45. Percival, F. W., Cass, L. G., Bozak, K. R., and Christoffersen, R. E. (1991). Avacado fruit protoplasts, a cellular model system for ripening studies. Plant Cell Rep. 10: 512–516.CrossRefGoogle Scholar
  46. Potter, H. (1988). Electroporation in biology: Methods, applications and instrumentation. Anal. Biochem. 174: 361–373.PubMedCrossRefGoogle Scholar
  47. Puonti-Kaerlas, J., Ottosson, A., and Eriksson, T. (1992). Survival and growth of pea protoplasts after transformation by electroporation. Plant Cell, Tissue and Organ Cult. 30: 141–148.CrossRefGoogle Scholar
  48. Rathus, C., and Birch, R. G. (1992a). Optimization of conditions for electroporation and transient expression of foreign genes in sugarcane protoplasts. Plant Sci. 81: 65–74.CrossRefGoogle Scholar
  49. Rathus, C., and Birch, R. G. (1992b). Stable transformation of callus from electroporated sugarcane protoplasts. Plant Sci. 82: 81–89.CrossRefGoogle Scholar
  50. Rhodes, C. A., Pierce, D. A., Mettler, I. J., Mascarenhas, D., and Detmer, J. J. (1988). Genetically transformed maize plants from protoplasts. Science 240: 204–207.PubMedCrossRefGoogle Scholar
  51. Riggs, C. D., and Bates, G. W. (1986). Stable transformation of tobacco by electroporation. Proc. Natl. Acad. Sci. USA 83: 5602–5606.PubMedCrossRefGoogle Scholar
  52. Rouan, D., Montané, M.-H., Alibert, G., and Teissié (1991). Relationship between protoplast size and critical field strength in protoplast electropulsing and application to reliable DNA uptake in Brassica. Plant Cell Rep. 10: 139–143.CrossRefGoogle Scholar
  53. Saunders, J. A., Matthews, G. R, and Van Wert, S. L. (1992). Pollen electrotransformation for gene transfer in plants Pages 227–247. In Guide to Electroporation and Electrofusion. Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E. eds. Academic Press, New York.Google Scholar
  54. Sawicka, T. (1987). Membrane-bound nucleotic activity of corn root cells. Phytochem. 26: 59–63.CrossRefGoogle Scholar
  55. Seguin, A., and Lalonde, M. (1988). Gene transfer by electroporation in betulaceae protoplasts: Alnus incana. Plant Cell Rep. 7: 367–370.Google Scholar
  56. Shillito, R. D., Saul, M. W., Paszkowski, J., Mueller, M., and Potrykus, I. (1985). High efficiency direct gene transfer to plants. Biotechnol. 3: 1099–1103.CrossRefGoogle Scholar
  57. Shimamoto, K., Terada, R., Isawa, T., and Fujimoto, H. (1989). Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276.CrossRefGoogle Scholar
  58. Tada, Y., Sakamoto, M., and Fujimura, T. (1990). Efficient gene introduction into rice by electroporation and analysis of transgenic plants: Use of electroporation lacking chloride ions. Theor. Appl. Genet. 80: 475–480.CrossRefGoogle Scholar
  59. Tagu, D., Bergounioux, C., Perennes, C. and Gadal, P. (1990). Inheritance of two foreign genes co-introduced into Petunia hybrida by direct gene transfer. Plant Cell, Tissue and Organ Cult. 21: 259–266.CrossRefGoogle Scholar
  60. Tautorus, T. E., Bekkaoui, F., Pilon, M., Datla, R. S. S., Crosby, W. L., Fowke, L. C., and Dunstan, D. I. (1989). Factors affecting transient expression in electroporated black spruce (Picea mariana) and jack pine (Pinus banksiana) protoplasts. Theor. Appl. Genet. 78: 531–536.CrossRefGoogle Scholar
  61. Töpfer, R., Gronenborn, B., Schell, J., and Steinbiss, H.-H. (1989). Uptake and transient expression of chimeric genes in seed-derived embryos. The Plant Cell. 1: 133–139.PubMedCrossRefGoogle Scholar
  62. Toriyama, K., Arimoto, Y., Uchimiya, H., and Hinata, K. (1988). Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technol. 6: 1072–1074.CrossRefGoogle Scholar
  63. Tsukada, M., Kusano, T., Kitagawa, Y. (1989). Introduction of foreign genes into tomato protoplasts by electroporation. Plant Cell Physiol. 30: 599–603.Google Scholar
  64. Tyagi, S., Spoerlein, B., Tyagi, A. K., Herrmann, R. G., and Koop, H. U. (1989). PEG- and electroporation-induced transformation in Nicotiana tabacum: Influence of genotype on transformation frequencies. Theor. Appl. Genet. 78: 287–292.CrossRefGoogle Scholar
  65. Widholm, J. M., Dhir, S. K., and Dhir, S. (1992). Production of transformed soybean plants by electroporation of protoplasts. Physiol. Plant. 85: 357–361.CrossRefGoogle Scholar
  66. Wilson, C. M. (1968a). Plant nucleases. I. Separation and purification of two ribonucleases and one nuclease from corn. Plant Physiol. 43: 1332–1338.PubMedCrossRefGoogle Scholar
  67. Wilson, C. M. (1968b). Plant nucleases. II. Properties of corn ribonucleases I and II and corn nuclease I. Plant Physiol. 43: 1339–1346.PubMedCrossRefGoogle Scholar
  68. Wirtz, U., Schell, J. and Czernilofsky, A. P. (1987). Recombination of selectable marker DNA in Nicotiana tabacum. DNA 6: 245–253.PubMedCrossRefGoogle Scholar
  69. Zhang, H. M., Yang, H., Rech, E. L., Golds, T. J., Davis, A. S., Mulligan, B. J., Cocking, E. C., and Davey, M. R. (1988). Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep. 7: 379–384.Google Scholar
  70. Zimmermann, U., and Benz, R. (1980). Dependence of the electrical breakdown on the charging time in Valonia utricularis. Membrane Biol. 53: 33–43.CrossRefGoogle Scholar
  71. Zimmermann, U., Pilwat, G., and Riemann, F. (1974). Dielectric breakdown of cell membranes. Biophys. J. 14: 881–899.PubMedCrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • M. Joersbo
  • J. Brunstedt

There are no affiliations available

Personalised recommendations