Advertisement

Laser Pulse Shaping for State-Selective Excitation

  • Warren S. Warren
  • Mark Haner

Abstract

Our research focuses on the design and application of pulse sequences with enhanced control over the radiation field (tailored phase and amplitude modulated pulses or phase shifted sequences) to produce simple and interpretable molecular states in a wide variety of applications (nuclear magnetic resonance, magnetic resonance imaging, and laser spectroscopy). Experimentally generating such “ultracoherent transient” laser pulse sequences with complete control of pulse shapes, phases, and delays previously presented a formidable challenge, but theoretical work has shown that such capabilities would enhance multiphoton pumping1,2, selectively excite high vibrational levels of the electronic ground stated3 or measure contributions from transition electric dipole-dipole interactions in condensed phases4. There have even been recent calculations which show that a well-defined phase relation between multiple lasers5 or shaped laser pulses6,7 can promote state-selective chemistry. In this paper we will present the first results from an apparatus which lets us simultaneously tailor pulse shape and control phase shifts on a picosecond timescale, and compare the technological state-of-the-art in various laboratories to the level of sophistication necessary for experimental realization of these concepts.

Keywords

Pulse Shaping Phase Mask Amplitude Modulate Pulse Path Length Difference Laser Pulse Shaping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    J-C. Diels and S. Besnainou, J. Chem. Phys. 85, 6347 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    W.S. Warren and A. H. Zewail, J. Chem. Phys. 78, 3583 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    J. Bates and W. S. Warren, Advances in Laser Science I (W. Stwalley and M. Lapp, editors, American Institute of Physics, vol. 146, New York, 1986) p.429Google Scholar
  4. 4.
    W.S. Warren and A. H. Zewail, J. Chem. Phys. 78, 2298 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    P. Brumer and M. Shapiro, Chem. Phys. Lett. 126, 541(1986)ADSCrossRefGoogle Scholar
  6. 6.
    D. J. Tannor and S. A. Rice, J. Chem. Phys. 83, 5013(1985)Google Scholar
  7. 7.
    H. Rabitz, private communication; H. Rabitz, paper in these proceedingsGoogle Scholar
  8. 8.
    W. S. Warren and M. Silver, Adv. Mag. Res. (in press)Google Scholar
  9. 9.
    W.S. Warren, J. Bates, M. McCoy, M. Navratil and L. Mueller, J. Opt. Soc. Am. B3,488(1986)ADSGoogle Scholar
  10. 10.
    W. S. Warren, J. Chem. Phys. 81, 5437(1984)ADSCrossRefGoogle Scholar
  11. 11.
    F. Loaiza, K.-T. Lin, W. S. Warren, M. Silver, H. Egloff, G. Laub and B. Kiefer, Health Care Instrum. 1, 188(1986)Google Scholar
  12. 12.
    J. Gutow, M. McCoy, F. Spano and W. S. Warren, Phys. Rev. Lett. 55, 1090(1985)ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Banash and W. S. Warren, Laser Chemistry 6, 47(1986)CrossRefGoogle Scholar
  14. 14.
    L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975)Google Scholar
  15. 15.
    M. S. Silver, R. I. Joseph and D. I. Hoult, Phys. Rev. A31, 2753 (1985)ADSGoogle Scholar
  16. 16.
    C. P. Lin, J. Bates, J. Mayer and W. S. Warren, J. Chem. Phys. 86, 3750(1987)ADSCrossRefGoogle Scholar
  17. 17.
    F. Spano and W. S. Warren, Phys. Rev. A (submitted)Google Scholar
  18. 18..
    M. Haner, F. Spano and W. S. Warren, Ultrafast Phenomena V (G. Fleming and A. Siegman, eds; Springer, Berlin, 1986), p.514Google Scholar
  19. 19.
    M. Haner and W. S. Warren, Applied Optics (in press)Google Scholar
  20. 20.
    “Princeton Team Develops Programmable ps Pulses”, Lasers and Applications, April 1987, p.24–26Google Scholar
  21. 21.
    M. Haner and W. S. Warren, Opt. Lett. 12, 398(1987)ADSCrossRefGoogle Scholar
  22. 22.
    A. Mukherjee, N. Mukherjee, J.-C. Diels and G. Arzumanyan, Ultrafast Phenomena V(G. Fleming and A. Siegman, editors; Springer, Berlin, 1986) p.266Google Scholar
  23. 23.
    F. Spano, M. Haner and W. S. Warren, Chem. Phys. Lett. 135,97(1987)ADSCrossRefGoogle Scholar
  24. 24.
    F. Spano, F. Loaiza, M. Haner and W. S. Warren, Ultrafast Phenomena IV,99(D. Auston and K. Eisenthal, editors; Springer, New York, 1984)Google Scholar
  25. 25.
    F. Spano and W. S. Warren, Laser Applications to Chemical Dynamics(M.A.El-Sayed. ed.)Proc. SPIE 620, 52(1986)Google Scholar
  26. 26a.
    A. M. Weiner, J. P. Heritage and R. N. Thurston, Opt. Lett. 11, 153(1986);ADSCrossRefGoogle Scholar
  27. 26b.
    A. M. Weiner, J. P. Heritage and R. N. Thurston, Opt. Lett. 10, 609(1985);ADSCrossRefGoogle Scholar
  28. 26c.
    A. M. Weiner, J. P. Heritage and R. N. Thurston, J. P. Heritage, private communicationGoogle Scholar
  29. 27.
    W. S. Warren, Laser Applications to Chemical Dynamics(M. A. El-Sayed,ed.) Proc. SPIE 742, 42(1987).Google Scholar
  30. 28.
    M. Haner and W. S. Warren, Phys. Rev. Lett, (submitted)Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Warren S. Warren
    • 1
  • Mark Haner
    • 1
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations