Thermal techniques have found wide application in the study of properties of biological and lipid model membranes. Particularly differential scanning calorimetry (DSC) has become a standard technique for studying the thermally induced transition of biological membranes and bilayers of model lipids from an ordered, crystallinelike state at low temperature (gel phase) to a more disordered liquid-crystalline state at higher temperature (Chapman et al, 1967; Chapman, 1968; Ladbrooke and Chapman, 1969; Lee, 1977a, b; Barisas and Gill, 1978; Mabrey and Sturtevant, 1978; McElhaney, 1982; Bach, 1984; Donovan, 1984). This gel to liquid-crystalline phase transition is a highly cooperative transition. The endothermic effect observed on heating the system through the phase transition is caused by changes in internal energy of the system as the number of gauche conformations in the fatty acyl chains increases, and by concomitant changes in van der Waals interactions between the chains and polar interactions at the lipid bilayer-water interface. The “melting” of the fatty acyl chains is accompanied by an increase in total volume of the bilayer by ca. 2%-4% (Sheetz and Chan, 1972; Blazyk et al, 1975; Melchior and Morowitz, 1972), the lateral expansion in the plane of the bilayer being much larger (ca.20%- 25%). This increase in molecular area at the bilayer-water interface is thus compensated to a large extent by a thinning of the membrane in the liquid-crystalline state.


Differential Scan Calorimetry Head Group Phosphatidic Acid Reaction Enthalpy Fatty Acyl Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bach, D., 1984, in: Biomembrane Structure and Function (Topics in Molecular and Structural Biology, D. Chapman, ed.), p. 1, Verlag Chemie, Weinheim.Google Scholar
  2. Barisas, B. G., and Gill, S. J., 1978, Ann. Rev. Phys. Chem. 29:141.Google Scholar
  3. Bernard, E., Faucon, J. F., and Dufourcq, J., 1982, Biochim. Biophys. Acta. 688:152.PubMedGoogle Scholar
  4. Blazyk, J. F., Melchior, D. L., and Steim, J. M., 1975, Anal. Biochem. 68:586.PubMedGoogle Scholar
  5. Blume, A., 1980, Biochemistry 19:4908.PubMedGoogle Scholar
  6. Blume, A., 1983, Biochemistry 22:5436.Google Scholar
  7. Blume, A., unpublished.Google Scholar
  8. Blume, A., and Eibl, H., 1979, Biochim. Biophys. Acta 558:13.PubMedGoogle Scholar
  9. Blume, A., and Griffin, R. G., 1982, Biochemistry 21:6230.PubMedGoogle Scholar
  10. Blume, A., and Hillmann, M., 1986, Eur. Biophys. J. 13:343.PubMedGoogle Scholar
  11. Calhoun, W. I., and Shipley, G. G., 1979, Biochemistry 18:1717.PubMedGoogle Scholar
  12. Cevc, G., and Marsh, D., 1985, Biophys. J. 47:21.PubMedGoogle Scholar
  13. Chapman, D., 1965, in: The Structure of Lipids, Methuen and Co., London.Google Scholar
  14. Chapman, D., 1968, in Biological Membranes (D. Chapman, ed.), Vol. 1, p. 165, Academic Press, New York.Google Scholar
  15. Chapman, D., Williams, R. M., and Ladbrooke, B. D., 1967, Chem. Phys. Lipids 1:445.Google Scholar
  16. Chapman, D., Urbina, J., and Keough, K. M., 1974, J. BioL Chem. 249:2512.PubMedGoogle Scholar
  17. Chen, A., and Wadsö, I., 1982, J. Biochem. Biophys. Methods 6:307.PubMedGoogle Scholar
  18. Chen, S. C., Sturteveant, J. M., and Gaflney, B. J., 1980, Proc. Natl Acad. Sci. USA 77:5060.PubMedGoogle Scholar
  19. Cohen, J. A., and Cohen, M., 1981, Biophys. J. 36:623.PubMedGoogle Scholar
  20. Datta, S. P., and Grzybowski, A. K., 1958, Biochem. J. 69:218.PubMedGoogle Scholar
  21. Demel, R. A. and de Kruyif, B., 1976, Biochim. Biophys. Acta 457:109.PubMedGoogle Scholar
  22. Donovon, J. W., 1984 Trends Biochem. Sci. 1984:340.Google Scholar
  23. von Dreele, P. H., 1978, Biochemistry 17:3939.Google Scholar
  24. Eibl, H., 1984, Angew. Chem., 96:247.Google Scholar
  25. Eibl, H., and Woolley, P., 1979, Biophys. Chem. 10:261.PubMedGoogle Scholar
  26. Elamrani, K., and Blume, A., 1984, Biochim. Biophys. Acta 769:578.Google Scholar
  27. Engel, J., and Schwarz, 1970, Angew. Chem. 82:468.Google Scholar
  28. Epand, R. M., and Sturtevant, J. M., 1981, Biochemistry 20:4603.PubMedGoogle Scholar
  29. Estep, T. N., Mountcastle, D. B., Biltonen, R. L., and Thompson, T. E., 1978, Biochemistry 17:1984.PubMedGoogle Scholar
  30. Estep, T. N., Mountcastle, D. B., Barenholz, Y., Biltonen, R. L., and Thompson, T. E., 1979, Biochemistry 18: 2112.PubMedGoogle Scholar
  31. Freire, E., and Snyder, B., 1980, Biochemistry 19:88.PubMedGoogle Scholar
  32. Freire, E., and Snyder, B., 1980, Biochemistry 19:88.PubMedGoogle Scholar
  33. Galla, H. J., and Sackmann, E., 1975, J. Am. Chem. Soc. 97:4114.PubMedGoogle Scholar
  34. Gevod, V. S., and Birdi, K. S., 1984, Biophys. J. 45:1079.PubMedGoogle Scholar
  35. Guggenheim, E. A., 1937, Trans. Faraday Soc. 33:151.Google Scholar
  36. Guggenheim, E. A., 1944, Proa R. Soc. (London) Ser. A 183:203, 213.Google Scholar
  37. Habermann, E., 1972, Science 177:324.Google Scholar
  38. Hauser, H., 1975, in:Water: A Comprehensive Treatise (F. Franks, ed.), Vol. 4, p. 209, Plenum Press, New York.Google Scholar
  39. Hauser, H., Darke, A., and Phillips, M. C, 1976, Eur. J. Biochem. 62:335.PubMedGoogle Scholar
  40. Heinicke, M., Bode, D., and Schernau, U., 1974, Biopolymers 13:227.Google Scholar
  41. Heyn, M. P., Blume, A., Rohorek, M., and Dencher, N. A., 1981a, Biochemistry 20:7109.PubMedGoogle Scholar
  42. Heyn, M. P., Cherry, R. J. and Dencher, N. A., 1981b, Biochemistry 20:840.PubMedGoogle Scholar
  43. Hildebrand, H., 1929, J. Am. Chem. Soc 51:66.Google Scholar
  44. Hitchcock, P. B., Mason, R., Thomas, K. M., and Shipley, G. G., 1974, Proc. Natl Acad. Sci USA 71:3036.PubMedGoogle Scholar
  45. Hui, S. W., and He, N.-B., 1983, Biochemistry 227:1159.PubMedGoogle Scholar
  46. Ito, T., and Ohnishi, S., 1974, Biochim. Biophys. Acta 352:29.PubMedGoogle Scholar
  47. Jähnig, F., 1981, Biophys. J. 36:329.PubMedGoogle Scholar
  48. Jähnig, F., 1983, Proc. Natl Acad. Sci. USA 80:3691.PubMedGoogle Scholar
  49. Jähnig, F., Harlos, K., Vogel, H., and Eibl, H., 1979, Biochemistry 18:1459.PubMedGoogle Scholar
  50. Jähnig, F., Vogel, H., and Best, L., 1982, Biochemistry 21:6790.PubMedGoogle Scholar
  51. Krakauer, H., 1972, Biopotymers 11:811.Google Scholar
  52. Kresheck, G. G., 1975, in:Water: A Comprehensive Treatise (F. Franks, ed.), Vol. 4, p. 95, Plenum Press, New York.Google Scholar
  53. Krishan, K. S., and Brandts, J. F., 1978, Methods Enzymol. 49:1.Google Scholar
  54. Ladbrooke, B. D., and Chapman, D., 1969, Chem. Phys. Lipids 3:304.PubMedGoogle Scholar
  55. Ladbrooke, B. D., Williams, R. M., and Chapman, D., 1968, Biochim. Biophys. Acta 150:333.PubMedGoogle Scholar
  56. Lee, A. G., 1977a, Biochim. Biophys. Acta 472:237.PubMedGoogle Scholar
  57. Lee, A. G., 1977b, Biochim. Biophys. Acta 472:285.PubMedGoogle Scholar
  58. Lee, A. G., 1978, Biochim. Biophys. Acta 507:433.Google Scholar
  59. Lentz, B. R., Barrow, D. A. and Hoechli, M., 1980, Biochemistry 19:1943.PubMedGoogle Scholar
  60. Mabrey, S., and Sturtevant, J. M., 1976, Proc. NatL Acad. Sci. USA 73:3862.PubMedGoogle Scholar
  61. Mabrey, S., and Sturtevant, J. M., 1978, in Methods in Membrane Biology, Vol. 9, p. 237, Plenum Press, New York.Google Scholar
  62. Mabrey, S., Mateo, P. L., and Sturtevant, J. M., 1978, Biochemistry 17:2464.PubMedGoogle Scholar
  63. McEIhaney, R. N., 1982, Chem. Phys. Lipids 30:229.Google Scholar
  64. McIntosh, T. J., 1980, Biophys. J. 29:237.PubMedGoogle Scholar
  65. Marsh, D., and Watts, A., 1982, in Lipid-Protein Interactions (P. C. Jost and O. H. Griffith, eds.), Vol. II, J. Wiley, New York.Google Scholar
  66. Mason, J. T., Broccoli, A. V., and Huang, C., 1981, AnaL Biochem. 113:96.PubMedGoogle Scholar
  67. Massey, J. M., Gotto, A. M., and Pownall, H. J., 1981, Biochemistry 20:1575.PubMedGoogle Scholar
  68. Meier, P., Ohmes, E., Kothe, G., Blume, A., Weidner, J., and Eibl, H., 1983, J. Phys. Chem. 87:4904.Google Scholar
  69. Melchior, D. L., and Morowitz, H. J., 1972, Biochemistry 11:4558.PubMedGoogle Scholar
  70. Menger, F. M., 1979,Acc. Chem. Res. 12:111. Google Scholar
  71. Mollay, Ch., 1976, FEBS Lett. 64:65.PubMedGoogle Scholar
  72. Nagle, J. F., and Wilkinson, D. A., 1978, Biophys. J. 23:159.PubMedGoogle Scholar
  73. Nichols, N., SkÖld, R., Spink, C., Suurkuusk, J., and Wadsö, I., 1976., J. Chem. Thermodynam 8:1081. Google Scholar
  74. Ohki, S., and Sauve, R., 1978, Biochim. Biophys. Acta 511:377.PubMedGoogle Scholar
  75. Owicki, J. C., and McConnell, H. H. M., 1979, Proc. Natl Acad. Sci. USA 76:4750.PubMedGoogle Scholar
  76. Papahadiopoulos, D., 1974, J. Colloid Interface Sci. 58:459.Google Scholar
  77. Petersen, N. O., and Chan, S. I., 1977, Biochemistry 16:2657.PubMedGoogle Scholar
  78. Privalov, P., and Khechinashvili, N. N., 1974, J. Mol. Biol. 86:556.Google Scholar
  79. Privalov, P., Plotnikov, V. V., and Filimonov, V. V. 1975, J. Chem. Thermodynam. 7:41.Google Scholar
  80. Puskin, J. S., and Martin, T., 1979 Biochim. Biophys. Acta 552:53.PubMedGoogle Scholar
  81. Rialdi, G., and Raffanti, S., 1984, in: Thermochemistry and Its Applications to Chemical and Biochemical Systems (M. A. V. Ribeiro da Silva, ed.), p. 511, D. Reidel, Dordrecht.Google Scholar
  82. Roux, G., Perron, G., and Desnoyers, J. E., 1978,Can. J. Chem. 56:2808.Google Scholar
  83. Seddon, J. M., Harlos, K., and Marsh, D., 1983, J. Biol. Chem. 258:3850.PubMedGoogle Scholar
  84. Seelig, J., 1982, in: Lipid-Protein Interactions (P. C. Jost and O. H. Griffith, eds.), Vol. II, J. Wiley, New York.Google Scholar
  85. Sheetz, M. P., and Chan, S. I., 1972, Biochemistry 11:4573.PubMedGoogle Scholar
  86. Singer, N. J., and Nicholson, G. L., 1972, Science 175:720.PubMedGoogle Scholar
  87. Stankowski, S., 1983a, Biochim. Biophys. Acta. 735:341.Google Scholar
  88. Stankowski, S., 1983b, Biochim. Biophys. Acta. 735:352.Google Scholar
  89. Stümpel, J., Niksch, A., and Eibl, H., 1981, Biochemistry 20:662.PubMedGoogle Scholar
  90. Stümpel, J., Eibl, H., and Niksch, A., 1983, Biochim. Biophys. Acta. 727:246.PubMedGoogle Scholar
  91. Sugar, I. P., and Monticelli, G., 1983, Biophys. Chem. 18:281.PubMedGoogle Scholar
  92. Terwilliger, T. C., Weissman, L., and Eisenberg, D., 1982, Biophys. J. 37:353.PubMedGoogle Scholar
  93. Tosteson, M. T., and Tosteson, D. C, 1981, Biophys. J. 36:109.PubMedGoogle Scholar
  94. Träuble, H., 1971, Naturwissenschaften 58:277.PubMedGoogle Scholar
  95. Träuble, H., 1976, in Structure of Biological Membranes (S. Abramhamson and I. Pasher, eds.), p. 509, Plenum Press, New York.Google Scholar
  96. Träuble, H., and Eibl, H., 1974, Proc. Natl Acad. Sci. USA 71:214.PubMedGoogle Scholar
  97. Träuble, H., Teubner, M., Woolley, P., and Eibl, H., 1976, Biophys. Chem. 4:319.Google Scholar
  98. Vogel, H., Jähnig, F., Hoffmann, V., and Stümpel, J., 1983, Biochim. Biophys. Acta 733:201.PubMedGoogle Scholar
  99. Watts, A., Harlos, K., Maschke, W., and Marsh, D., 1978, Biochim. Biophys. Acta 510:63.PubMedGoogle Scholar
  100. Watts, A., Harlos, K., and Marsh, D., 1981, Biochim. Biophys. Acta 645:91.PubMedGoogle Scholar
  101. Wilkinson, D. A., and Nagle, J. F., 1981, Biochemistry 20:187.PubMedGoogle Scholar
  102. Wilkinson, D. A., and Nagle, J. F., 1982, Biochim. Biophys, Acta. 688:107.Google Scholar
  103. Wittebort, R. J., Schmidt, C. F. and Griffin, R. G., 1981, Biochemistry 20:4223.PubMedGoogle Scholar
  104. Woolley, P., and Teubner, M., 1979, Biophys. Chem. 10:335PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Alfred Blume
    • 1
  1. 1.Institut für physikalische Chemie der Universität FreiburgFreiburgWest Germany

Personalised recommendations