Exploratory and confirmatory factor analysis reflect respectively two different approaches to the philosophy of science. To understand the differences between these two approaches, we must first consider their philosophical background.


Confirmatory Factor Analysis Loss Function Exploratory Factor Analysis Manifest Variable Confirmatory Factor Analysis Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aune, B. Rationalism, empiricism, and pragmatism. New York: Random House, 1970.Google Scholar
  2. Bentler, P. M., and Bonett, D. G. Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 1980, 88, 588–606.CrossRefGoogle Scholar
  3. Bernard, C. [An introduction to the study of experimental medicine.](H. C. Green, trans.). New York: Dover Publications, 1957. (First published in France in 1865 and first issued in an English translation in 1927.)Google Scholar
  4. Bhaskar, R. A realist theory of science. Leeds, U.K.: Leeds Books, 1975.Google Scholar
  5. Brody, E. B., and Brody, N. Intelligence: Nature, determinants, and consequences. New York: Academic Press, 1976.Google Scholar
  6. Bunge, M. Causality. Cambridge, Mass.: Harvard University Press, 1959.Google Scholar
  7. Bunge, M. Physics and reality. In E. A. MacKinnon (Ed.), The problem of scientific realism. New York: Appleton—Century—Crofts, 1972. (Originally published in Dialectica: Revue Internationale de Philosophie de la connaissance,1966, 20,174–195.)Google Scholar
  8. Cattell, R. B. Factor analysis. New York: Harper Brothers, 1952.Google Scholar
  9. Cattell, R. B., Raymond B. Cattell. In G. Lindzey (Ed.) A history of psychology in autobiography. Vol. VI. Englewood Cliffs, N.J.: Prentice-Hall, 1974, pp. 59–100.Google Scholar
  10. Cattell, R. B. The scientific use of factor analysis. New York: Plenum, 1978.Google Scholar
  11. Chaddock, R. E. Principles and methods of statistics. Boston: Houghton Mifflin, 1925.Google Scholar
  12. Cronbach, L. J. Essentials of psychological testing ( 3rd ed. ). New York: Harper & Row, 1970.Google Scholar
  13. Daniels, G. H. American science in the age of Jackson. New York: Columbia University Press, 1968.Google Scholar
  14. Daston, L. J. Mathematics and the moral sciences: The rise and fall of the probability of judgments, 1785–1840. In H. N. Jahnke and M. Otte (Eds.), Epistemological and social problems of the sciences in the early nineteenth century. Dordrecht, Holland: Reidel, 1981.Google Scholar
  15. Dewey, J. The quest for certainty. New York: Paragon Books, 1979. (Originally published in 1929.)Google Scholar
  16. Feyerabend, P. K. Problems of empiricism. In R. G. Colodny, (Ed.), Beyond the edge of certainty. Englewood Cliffs, N. J.: Prentice-Hall, 1965.Google Scholar
  17. Feyerabend, P. K. Classical empiricism. In R. E. Butts and J. W. Davis (Eds.), The methodological heritage of Newton. Toronto: University of Toronto Press, 1970.Google Scholar
  18. Fisher, R. A. Statistical methods for research workers. Edinburgh: Oliver & Boyd, 1925.Google Scholar
  19. Glaton, F. Inquiries into human faculty and its development. New York: AMS Press, 1973. (Reprint of 1908 edition.)Google Scholar
  20. Guilford, J. P. The structure of the intellect. Psychological Bulletin, 1956, 53, 267–293.PubMedCrossRefGoogle Scholar
  21. Guilford, J. P. Three faces of intellect. American Psychologist, 1959, 14, 469–479.CrossRefGoogle Scholar
  22. Guilford, J. P. The nature of human intelligence. New York: McGraw—Hill, 1967.Google Scholar
  23. Guttman, L. Multiple group methods for common-factor analysis: Their basis, computation, and interpretation. Psychometrika, 1952, 17, 209–222.CrossRefGoogle Scholar
  24. Guttman, L. The determining of factor score matrices with implications for five other basic problems of common-factor theory. British Journal of Statistical Psychology, 1955, 8, 65–81.CrossRefGoogle Scholar
  25. Guttman, L. A. structural theory for intergroup beliefs and attitudes. American Sociological Review, 1959, 24, 318–328.CrossRefGoogle Scholar
  26. Guttman, L. A faceted definition of intelligence. In R. Eiferman (Ed.), Studies in psychology, Scripta Hierosolymitana. Jerusalem: The Hebrew University, 1965.Google Scholar
  27. Hempel, C. Aspects of scientific explanation. New York: Free Press, 1965.Google Scholar
  28. Holzinger, K. J. A simple method of factor-analysis. Psychometrika, 1944, 9, 257–262.CrossRefGoogle Scholar
  29. Hume, D. A treatise of human nature. L. A. Selby-Bigge (Ed.). Oxford: Clarendon Press, 1965. (Originally published in 1888 based on original three-volume edition published in 1739.)Google Scholar
  30. Hunter, J. E., and Gerbing, D. W. Unidimensional measurement, second order factor analysis and causal models. In B. M. Staw and L. L. Cummings (Eds.), Research in organizational behavior. Vol. IV. Greenwich, Conn.: Jai Press, 1982, pp. 267–320.Google Scholar
  31. Ingmire, A. E., Taylor, C. W., Darragh, R., Geitgey, D., Gross, Y., Orwig, B. I. Popiel, E., Smith, F. L., Smith, H. H., Van Sant, G. E., and Mulaik, S. A. The effectiveness of a leadership program in nursing. Boulder, Co.: Western Interstate Commission for Higher Education, 1967.Google Scholar
  32. James, L. R., Mulaik, S. A., and Brett, J. M. Causal analysis: Assumptions, models and data. Beverly Hills: Sage, 1982.Google Scholar
  33. Jöreskog, K. G. A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 1969, 34, 183–202.CrossRefGoogle Scholar
  34. Jöreskog, K. G. A general method for analysis of covariance structures. Biometrika, 1970, 57, 239–251.Google Scholar
  35. Jöreskog, K. G. Analyzing psychological data by structural analysis of covariance matrices. In D. H. Krantz, R. C. Atkinson, R. D. Luce, and P. Suppes (Eds.), Contemporary developments in mathematical psychology. Vol. II. San Francisco: Freeman, 1974.Google Scholar
  36. Jöreskog, K. G. Structural equation models in the social sciences: specification, estimation, and testing. In J. Magidson (Ed.) Advances in factor analysis and structural equation models. Boston: Abt Books, 1979.Google Scholar
  37. Jöreskog, K. G. & Goldberger, A. S. A factor analysis by generalized least squares. Psychometrika, 1972, 37, 243–260.CrossRefGoogle Scholar
  38. Jöreskog, K. G., and Sörbom, D. LISREL IV users guide. Chicago: National Educational Resources, 1978.Google Scholar
  39. Jöreskog, K. G., and Sörbom, D. LISREL V: Analysis of linear structural relationships by maximum likelihood and least squares methods. Research Report 81–8, Department of Statistics, University of Uppsala, Sweden, 1981.Google Scholar
  40. Jöreskog, K. G., and Sörbom, D. LISREL VI: Analysis of linear structural relationships by maximum likelihood, instrumental variables, and least squares methods. Mooresville, Ind.: Scientific Software Inc., 1984.Google Scholar
  41. Kalleberg, A. L., and Kluegel, J. R. Analysis of the multitrait-multimethod matrix: Some limitations and an alternative. Journal of Applied Psychology, 1975, 60, 1–9.CrossRefGoogle Scholar
  42. Krajewski, W. On hypotheses and hypotheticism. In J. Agassi, and R. S. Cohen (Eds.), Scientific philosophy today. Dordrecht, Holland: Reidel, 1982.Google Scholar
  43. Laudan, L. The sources of modern methodology. In R. E. Butts and J. Hintikka (Eds.), Historical and philosophical dimensions of logic, methodology, and philosophy of science. Dordrecht, Holland: Ridel, 1977, pp. 3–19.Google Scholar
  44. Laudan, L. Why was the logic of discovery abandoned? In T. Nickles (Ed.) Scientific discovery, logic and rationality. (Boston studies in the philosophy of science, Vol. 56 ). Dordrecht, Holland: Reidel, 1980, pp. 173–183.Google Scholar
  45. Laudan, L. Science and hypothesis. Dordrecht, Holland: Reidel, 1981.Google Scholar
  46. Lenzen, V. F. Causality in natural science. Springfield, Ill.: Thomas, 1954.Google Scholar
  47. Losee, J. A historical introduction to the philosophy of science ( 2nd ed. ). London: Oxford University Press, 1980.Google Scholar
  48. McDonald, R. P. A simple comprehensive model for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 1978, 31, 59–72.CrossRefGoogle Scholar
  49. McDonald, R. P. A simple comprehensive model for the analysis of covariance structures: Some remarks on applications. British Journal of Mathematical and Statistical Psychology, 1980, 33, 243–260.CrossRefGoogle Scholar
  50. McDonald, R. P., and Mulaik, S. A. Determinacy of common factors: A nontechnical review. Psychological Bulletin, 1979, 86, 297–306.CrossRefGoogle Scholar
  51. Manicas, P. T., and Secord, P. F. Implications for psychology of the new philosophy of science. American Psychologist, 1983, 38, 399–413.CrossRefGoogle Scholar
  52. Mellenbergh, G. J., Kelderman, H., Stijlen, J. G., and Zondag, E. Linear models for the analysis and construction of instruments in a facet design. Psychological Bulletin, 1979, 86, 766–776.CrossRefGoogle Scholar
  53. Mill, J. S. A system of logic. New York: Longmans, Green, 1891. (First published in 1843.)Google Scholar
  54. Miller, A. D. Logic of causal analysis: From experimental to nonexperimental designs. In H. M. Blalock (Ed.), Causal models in the social sciences. Chicago: Aldine–Atherton, 1971.Google Scholar
  55. Mulaik, S. A. The foundations of factor analysis. New York: McGraw–Hill, 1972.Google Scholar
  56. Mulaik, S. A. Confirmatory factor analysis. In D. J. Amick and H. J. Walberg (Eds.), Introductory multivariate analysis. Berkeley: McCutchan, 1975, pp. 170–207.Google Scholar
  57. Mulaik, S. A. A critical history of the origins of exploratory statistics in 19th century British empiricism. Paper presented to the Society for Multivariate Experimental Psychology, Fort Worth, Texas, November 1980.Google Scholar
  58. Mulaik, S. A. How should we overidentify structural equation models? Paper read at the annual meeting of the Society for Multivariate Experimental Psychology, Atlanta, Georgia, November 4–6, 1982.Google Scholar
  59. Mulaik, S. A. Exploratory statistics and empiricism. Philosophy of Science, 1985, 52, 410–430.CrossRefGoogle Scholar
  60. Mulaik, S. A. Toward a conception of causality applicable to experimentation and causal modeling. Child Development, 1987a, 58, 18–32.CrossRefGoogle Scholar
  61. Mulaik, S. A. A brief history of the philosophical foundations of exploratory factor analysis. Multivariate Behavioral Research, 1987b, 22, 267–305.CrossRefGoogle Scholar
  62. Mulaik, S. A., and McDonald, R. P. The effect of additional variables on factor indeterminacy. Psychometrika, 1978, 43, 177–192.CrossRefGoogle Scholar
  63. Pearson, K. The grammar of science. (Part I—Physical.) London: Adam & Charles Black, 1911. (Original edition 1892.)Google Scholar
  64. Popper, K. R. The logic of scientific discovery. New York: Science editions, 1959. (First published in 1934 and translated by the author.)Google Scholar
  65. Quetelet, M. A. [Letters addressed to H. R. H. the Grand Duke of Saxe Coburg and Gotha, on the theory of probability as applied to the moral and political sciences.](O. G. Downes, trans.). London: Charles & Edwin Layton, 1849. (Originally published as Lettres… sur la theorie des probabilities. Brussels, 1846.)Google Scholar
  66. Quine, W. V. On the reasons for indeterminacy of translation. The Journal of Philosophy, 1970, 67, 179–183.Google Scholar
  67. Rorty, R. Philosophy and the mirror of nature. Princeton, N.J.: Princeton University Press, 1979.Google Scholar
  68. Schönemann, P. H., and Steiger, J. H. Regression component analysis. British Journal of Mathematical and Statistical Psychology, 1976, 29, 175–189.CrossRefGoogle Scholar
  69. Shye, S. On the search for laws in the behavioral sciences. In S. Shye (Ed.), Theory construction and data analysis in the behavioral sciences. San Francisco: Jossey–Bass, 1978, pp. 2–24.Google Scholar
  70. Steiger, J. H., and Schönemann, P. H. A history of factor indeterminacy. In S. Shye (Ed.), Theory construction and data analysis in the behavioural sciences. San Francisco: Jossey–Bass, 1978, pp. 136–178.Google Scholar
  71. Thurstone, L. L. Note about the multiple group method. Psychometrika, 1949, 14, 43–45.PubMedCrossRefGoogle Scholar
  72. Tryon, R. C. Cluster analysis. Ann Arbor, Mich.: Edwards, 1939.Google Scholar
  73. Velicer, W. F., Peacock, A. C., and Jackson, D. N. A comparison of component and factor patterns: A Monte Carlo approach. Multivariate Behavioral Research, 1982, 17, 371–388.CrossRefGoogle Scholar
  74. Warren, H. C. A history of the association psychology. New York: Scribner’s, 1921.CrossRefGoogle Scholar
  75. Whewell, W. The philosophy of the inductive sciences founded upon their history (2nd ed.). 2 volumes. New York: Johnson Reprint Corporation, 1967. (Originally published in 1847.)Google Scholar
  76. Yule, U. The applications of the method of correlation to social and economic studies. Journal of the Royal Statistical Society, 1909, 72, 721.CrossRefGoogle Scholar
  77. Yule, U. An introduction to the theory of statistics. London: Griffin, 1911.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Stanley A. Mulaik
    • 1
  1. 1.School of PsychologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations