Topological Actions in Two-Dimensional Quantum Field Thories

  • K. Gawędzki
Part of the NATO ASI Series book series (NSSB, volume 185)


A systematic approach to 2-dimensional quantum field theories with to pological terms in the action is developed using as a mathematical tool the Deligne cohomology. As an application,it is shown how to bosonize the action of free fermions of arbitrary spin on a Riemann surface and how to find the spectrum of the Wess-Zumino-Witten sigma models without recurrence to modular invariance.


Riemann Surface Line Bundle Isomorphism Class Parallel Transport Holomorphic Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A.M. Dirac, Proc. R. Soc. London A133,60 (1931).ADSGoogle Scholar
  2. 2.
    D.J. Simms, N.M. Woodhouse,LectureNotesinPhysics,Vol.53,Springer(1976).Google Scholar
  3. 3.
    E. Witten, Commun.Math.Phys. 92, 455 (1984).MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    L. Alvarez-Gaumé, J.-B. Bost, G. Moore, P. Nelson,C Vafa,Phys.Lett.B178,105 (1986).Google Scholar
  5. 5.
    D. Gepner,E. Witten,Nucl.Phys. B278,493 (1986).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    P.A.M Dirac The principles of quantum mechanics,4th edition Oxford University Press(1958)zbMATHGoogle Scholar
  7. 7.
    R.P. Feynman,A.R. Hibbs,Quantum mechanics and path integrals,Mc.Graw-Hill.Google Scholar
  8. 8.
    T.T. Wu,C.N. Yang,Phys. Rev. D14, 437 (1976).MathSciNetADSGoogle Scholar
  9. 9.
    Y. Aharonov,D. Bohm, Phys.Rev.115, 485 (1959).MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    A.Kirillov,Elements de la theorie des representations,Editions Mir(1974).Google Scholar
  11. 11.
    B.Kostant,in Lecture Notes in Math.,Vol.170,pp.87-208,SpringerGoogle Scholar
  12. 12.
    R.Godement,To pologie algebrique et theorie des faisceaux,Hermann(1964).Google Scholar
  13. 13.
    C.G. Callan,R.F. Dashen,D.J. Gross,Phys.Let. 63B,334 (1976).ADSGoogle Scholar
  14. 14.
    R. Jackiw,C. Rebbi, Phys. Rev. Lett. 37, 172 (1976).ADSCrossRefGoogle Scholar
  15. 15.
    T.R. Ramadas,Commun. Math.Phys. 93, 355 (1984 ).MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    H.Esnault,E.Viehweg,Deligne-Beilinsoncohomology,publicationofMax-Planck-InstitutfurMathematik,Bonn.Google Scholar
  17. 17.
    O. Alvarez, Commun.Math.Phys. 100, 279 (1985).ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    R. Hamilton, Bull. Am.Math.Soc. 7, 65 (1982).MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    D. Friedan,E. Martinec,S. Shenker, Nucl.Phys. B271, 93 (1986).MathSciNetADSGoogle Scholar
  20. 20.
    L. Alvarez-Gaumé, J.B. Bost, G. Moore,P. Nelson,C. Vafa, BOzonization on higher genus Riemann surfaces Harvard-CERN preprintGoogle Scholar
  21. 21.
    V.G. Knizhnik,A.B. Zamolodchikov, Nucl.Phys. B247,83 (1984).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    A. Pressley,G. Segal, Loopgroups,ClarendonPress (1986).Google Scholar
  23. 23.
    V.G.Kac,InfinitedimensionalLiealgebras,CambridgeUniversityPress(1985).Google Scholar
  24. 24.
    .V.G.Kac,D.H.Peterson,inArithmeticsandgeometry,Vol.2,pp.141-166,Birkhauser(1983).Google Scholar
  25. 25.
    G.Felder,K.Gawedzki,A.Kupiainen,ThespectrumofWess-Zumino-Wittenmodels,IHESpreprint.Google Scholar
  26. 26.
    D. Gepner, Nucl.Physics. B287,111 (1987).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    A. Cappeli,C. Itzykson, J.B. Zuber, Nucl.Phys.B280 [FS 18],445 (1987) and the A-D-E classification of minimal and A1(1) conformal invariant theories to appear in Commun. Math. Phys.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • K. Gawędzki
    • 1
  1. 1.C.N.R.S.,I.H.E.S.Bures-sur-YvetteFrance

Personalised recommendations